


Hadoop Illuminated

Mark Kerzner <mark@hadoopilluminated.com>
Sujee Maniyam <sujee@hadoopilluminated.com>



Hadoop Illuminated
by Mark Kerzner and Sujee Maniyam



i

Dedication
To the open source community

This book on GitHub [https://github.com/hadoop-illuminated/hadoop-book]
Companion project on GitHub [https://github.com/hadoop-illuminated/HI-labs]



ii

Acknowledgements
From Mark
I would like to express gratitude to my editors, co-authors, colleagues, and bosses who shared the thorny
path to working clusters - with the hope to make it less thorny for those who follow. Seriously, folks,
Hadoop is hard, and Big Data is tough, and there are many related products and skills that you need to
master. Therefore, have fun, provide your feedback [http://groups.google.com/group/hadoop-illuminated],
and I hope you will find the book entertaining.

"The author's opinions do not necessarily coincide with his point of view." -  Victor Pelevin, "Generation
P"  [http://lib.udm.ru/lib/PELEWIN/pokolenie_engl.txt]

From Sujee
To the kind souls who helped me along the way

Copyright © 2013 Hadoop illuminated LLC. All Rights Reserved.



iii

Table of Contents
1. Who is this book for? ......................................................................................................  1

1.1. About "Hadoop illuminated" ................................................................................... 1
2. About Authors ................................................................................................................ 2
3. Why do I Need Hadoop ? ................................................................................................. 5

3.1. Hadoop provides storage for Big Data at reasonable cost .............................................  5
3.2. Hadoop allows to capture new or more data ..............................................................  6
3.3. With Hadoop, you can store data longer ...................................................................  6
3.4. Hadoop provides scalable analytics ..........................................................................  6
3.5. Hadoop provides rich analytics ...............................................................................  6

4. Big Data .......................................................................................................................  7
4.1. What is Big Data? ................................................................................................  7
4.2. Human Generated Data and Machine Generated Data ..................................................  7
4.3. Where does Big Data come from ............................................................................  8
4.4. Examples of Big Data in the Real world ...................................................................  8
4.5. Challenges of Big Data .........................................................................................  9
4.6. How Hadoop solves the Big Data problem ..............................................................  10

5. Soft Introduction to Hadoop ............................................................................................  11
5.1. MapReduce or Hadoop? .......................................................................................  11
5.2. Why Hadoop? ....................................................................................................  11
5.3. Meet the Hadoop Zoo .......................................................................................... 13
5.4. Hadoop alternatives .............................................................................................  14
5.5. Alternatives for distributed massive computations .....................................................  16
5.6. Arguments for Hadoop ........................................................................................  17
5.7. Say "Hi!" to Hadoop ...........................................................................................  17
5.8. Chapter Summary ...............................................................................................  20

6. Hadoop for Executives ...................................................................................................  21
7. Hadoop for Developers ..................................................................................................  23
8. Hadoop Distributed File System (HDFS) -- Introduction .......................................................  25

8.1. HDFS Concepts ..................................................................................................  25
8.1. HDFS Architecture .............................................................................................  28

9. Introduction To MapReduce ............................................................................................  31
9.1. How I failed at designing distributed processing .......................................................  31
9.2. How MapReduce does it ......................................................................................  32
9.3. How MapReduce really does it .............................................................................  32
9.4. Who invented this? .............................................................................................  35
9.5. The benefits of MapReduce programming ...............................................................  36

10. Hadoop Use Cases and Case Studies ...............................................................................  37
10.1. Politics ............................................................................................................  37
10.2. Data Storage ....................................................................................................  37
10.3. Financial Services .............................................................................................  37
10.4. Health Care ......................................................................................................  38
10.5. Human Sciences ...............................................................................................  39
10.6. Telecoms .........................................................................................................  39
10.7. Travel .............................................................................................................  40
10.8. Energy ............................................................................................................  40
10.9. Logistics ..........................................................................................................  41

11. Hadoop Distributions ...................................................................................................  43
11.1. Why distributions? ............................................................................................  43
11.2. Overview of Hadoop Distributions .......................................................................  43
11.3. Hadoop in the Cloud .........................................................................................  45

12. Big Data Ecosystem .....................................................................................................  46



Hadoop Illuminated

iv

12.1. Getting Data into HDFS .....................................................................................  46
12.2. Compute Frameworks ........................................................................................  46
12.3. Querying data in HDFS ...................................................................................... 46
12.4. Real time data access .........................................................................................  47
12.5. Big Data databases ............................................................................................  47
12.6. Hadoop in the Cloud .........................................................................................  48
12.7. Work flow Tools ..............................................................................................  48
12.8. Serialization Frameworks .................................................................................... 48
12.9. Monitoring Systems ...........................................................................................  49
12.10. Applications ...................................................................................................  49
12.11. Distributed Coordination ...................................................................................  49
12.12. Data Analytics Tools ........................................................................................ 49
12.13. Distributed Message Processing .........................................................................  50
12.14. Business Intelligence (BI) Tools .........................................................................  50
12.15. Stream Processing ...........................................................................................  50
12.16. YARN based frameworks .................................................................................  50
12.17. Miscellaneous .................................................................................................  51

13. Business Intelligence Tools For Hadoop and Big Data ........................................................  52
13.1. The case for BI Tools ........................................................................................  52
13.2. BI Tools Feature Matrix Comparison ....................................................................  52
13.3. Glossary of terms ..............................................................................................  54

14. Hardware and Software for Hadoop ................................................................................  55
14.1. Hardware .........................................................................................................  55
14.2. Software ..........................................................................................................  56

15. Hadoop Challenges ......................................................................................................  57
15.1. Hadoop is a cutting edge technology ....................................................................  57
15.2. Hadoop in the Enterprise Ecosystem .....................................................................  57
15.3. Hadoop is still rough around the edges .................................................................. 57
15.4. Hadoop is NOT cheap .......................................................................................  57
15.5. Map Reduce is a different programming paradigm ................................................... 57
15.6. Hadoop and High Availability .............................................................................  58

16. Publicly Available Big Data Sets ....................................................................................  59
16.1. Pointers to data sets ...........................................................................................  59
16.2. Generic Repositories ..........................................................................................  59
16.3. Geo data ..........................................................................................................  60
16.4. Web data .........................................................................................................  61
16.5. Government data ...............................................................................................  61

17. Big Data News and Links .............................................................................................  63
17.1. news sites ........................................................................................................  63
17.2. blogs from hadoop vendors .................................................................................  63



v

List of Figures
3.1. Too Much Data ............................................................................................................ 5
4.1. Tidal Wave of Data ......................................................................................................  9
5.1. Will you join the Hadoop dance? ..................................................................................  11
5.2. The Hadoop Zoo ........................................................................................................  13
8.1. Cray computer ...........................................................................................................  26
8.2. HDFS file replication ..................................................................................................  27
8.3. HDFS master / worker design .......................................................................................  28
8.4. HDFS architecture ......................................................................................................  28
8.5. Disk seek vs scan .......................................................................................................  29
8.6. HDFS file append .......................................................................................................  30
9.1. Dreams .....................................................................................................................  31
9.2. Angel checks the seal ..................................................................................................  34
9.3. Micro-targeting the electorate .......................................................................................  35



vi

List of Tables
5.1. Comparison of Big Data ..............................................................................................  16
7.1. .................................................................................................................................  24
11.1. Hadoop Distributions .................................................................................................  43
12.1. Tools for Getting Data into HDFS ...............................................................................  46
12.2. Hadoop Compute Frameworks ..................................................................................... 46
12.3. Querying Data in HDFS .............................................................................................  46
12.4. Real time access to data .............................................................................................  47
12.5. Databases for Big Data ..............................................................................................  47
12.6. Hadoop in the Cloud .................................................................................................  48
12.7. Work flow Tools ......................................................................................................  48
12.8. Serialization Frameworks ............................................................................................ 48
12.9. Tools for Monitoring Hadoop ......................................................................................  49
12.10. Applications that run on top of Hadoop .......................................................................  49
12.11. Distributed Coordination ...........................................................................................  49
12.12. Data Analytics on Hadoop ........................................................................................  49
12.13. Distributed Message Processing .................................................................................  50
12.14. Business Intelligence (BI) Tools .................................................................................  50
12.15. Stream Processing Tools ...........................................................................................  50
12.16. YARN based frameworks .........................................................................................  50
12.17. Miscellaneous Stuff .................................................................................................  51
13.1. BI Tools Comparison : Data Access and Management ......................................................  52
13.2. BI Tools Comparison : Analytics .................................................................................  53
13.3. BI Tools Comparison : Visualizing ...............................................................................  53
13.4. BI Tools Comparison : Connectivity .............................................................................  53
13.5. BI Tools Comparison : Misc .......................................................................................  54
14.1. Hardware Specs ........................................................................................................  55



1

Chapter 1. Who is this book for?

1.1. About "Hadoop illuminated"
This book is our experiment in making Hadoop knowledge available to a wider audience. We want this
book to serve as a gentle introduction to Big Data and Hadoop. No deep technical knowledge is needed
to go through the book. It can be a bed time read :-)

The book is freely available, it is licensed under Creative Commons Attribution-NonCommercial-Share-
Alike 3.0 Unported License [http://creativecommons.org/licenses/by-nc-sa/3.0/deed.en_US].

"Hadoop Illuminated" is a work in progress. It is a 'living book'. We will keep updating the book to reflect
the fast moving world of Big Data and hadoop. So keep checking back.

We appreciate your feedback. You can follow it on Twitter, discuss it in Google Groups, or send your
feedback via email.

• Twitter : @HadoopIllumint [https://twitter.com/HadoopIlluminat]

• Google Group : Hadoop Illuminated Google group [http://groups.google.com/group/hadoop-illuminat-
ed]

• Email Authors Directly : authors@hadoopilluminated.com [mailto:authors@HadoopIlluminated.com]

• Book GitHub : github.com/hadoop-illuminated/hadoop-book [https://github.com/hadoop-illuminat-
ed/hadoop-book]

• Source Code on GitHub : github.com/hadoop-illuminated/HI-labs [https://github.com/hadoop-illumi-
nated/HI-labs]
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Chapter 2. About Authors

Hello from Mark and Sujee

HI there!
Welcome to Hadoop Illuminated. This book is brought to you by two authors -- Mark Kerzner and Sujee
Maniyam. Both of us have been working in Hadoop ecosystem for a number of years. We have implement-
ed Hadoop solutions and taught training courses in Hadoop. We both benefited from Hadoop and the open
source community tremendously. So when we thought about writing a book on Hadoop, we choose to do it
in the fully open source way! It is a minuscule token of thanks from both of us to the Hadoop community.

Mark Kerzner (Author)

Mark Kerzner is an experienced/hands-on Big Data architect. He has been developing software for over 20
years in a variety of technologies (enterprise, web, HPC) and for a variety of verticals (Oil and Gas, legal,
trading). He currently focuses on Hadoop, Big Data, NoSQL and Amazon Cloud Services. His clients
include Bay Area startups, T-Mobile, GHX, Cision, and lately Intel, where he created and delivered Big
Data training.

Mark stays active in the Hadoop / Startup communities. He runs the Houston Hadoop Meetup, where he
presents and often trains. Mark’s company SHMsoft has won multiple innovation awards, and is a client
of Houston Incubator HTC, where Mark is involved with many startup initiatives.
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Mark contributes to a number of Hadoop-based projects, and his open source projects can be found
on GitHub [http://github.com/markkerzner]. He writes about Hadoop and other technologies in his blog
[http://shmsoft.blogspot.com/].

Mark does Hadoop training for individuals and corporations; his classes are hands-on and draw heavily
on his industry experience.

Links:
LinkedIn [https://www.linkedin.com/in/markkerzner] || GitHub [https://github.com/markkerzner] || Per-
sonal blog [http://shmsoft.blogspot.com/] || Twitter [https://twitter.com/markkerzner]

Sujee Maniyam (Author)

Sujee Maniyam is an experienced/hands-on Big Data architect. He has been developing software for the
past 12 years in a variety of technologies (enterprise, web and mobile). He currently focuses on Hadoop,
Big Data and NoSQL, and Amazon Cloud Services. His clients include early stage startups and enterprise
companies.

Sujee stays active in the Hadoop / Open Source community. He runs a developer focused Meetup called
'Big Data Gurus' [http://www.meetup.com/BigDataGurus/]. He has also presented at a variety of Meetups

Sujee contributes to Hadoop projects and his open source projects can be found on GitHub. He writes
about Hadoop and other technologies on his website.

Sujee does Hadoop training for individuals and corporations; his classes are hands-on and draw heavily
on his industry experience

Links:
LinkedIn [http://www.linkedin.com/in/sujeemaniyam] || GitHub [https://github.com/sujee] || Tech writ-
ings [http://sujee.net/tech/articles/] || Tech talks [http://sujee.net/tech/talks/] || BigDataGuru meetup [http://
www.meetup.com/BigDataGurus/]

Rebecca Kerzner (Illustrator)

The delightful artwork appearing in this book was created by Rebecca Kerzner. She is seventeen and stud-
ies at Beren Academy in Houston, TX. She has attended the Glassell school of art for many summers.
Her collection of artwork can be seen here [https://picasaweb.google.com/110574221375288281850/Re-
beccaSArt].

Rebecca started working on Hadoop illustrations two years ago, when she was fifteen.
It is interesting to follow her artistic progress. For example, the first version of the
"Hadoop Zoo" can be found here [https://plus.google.com/photos/110574221375288281850/al-
bums/5850230050814801649/5852442815905345938?banner=pwa]. Note the programmer's kids who
"came to see the Hadoop Zoo" are all pretty young. But as the artist grew, so also did her heroes, and
in  the current version of the same sketch [https://plus.google.com/photos/110574221375288281850/al-
bums/5850230050814801649/5852442453552955282?banner=pwa] you can see the same characters, but
older, perhaps around seventeen years of age. Even the Hadoop elephant appears more mature and serious.

All of Rebecca's Hadoop artwork can be viewed here [https://plus.google.com/pho-
tos/110574221375288281850/albums/5850230050814801649?banner=pwa].
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Contributors
We would like to thank the following people that helped us make this book a reality.

• Ben Burford : github.com/benburford [https://github.com/benburford]
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Chapter 3. Why do I Need Hadoop ?
Most people will consider hadoop because they have to deal with Big Data. See Chapter 4, Big Da-
ta [7] for more.

Figure 3.1. Too Much Data

3.1. Hadoop provides storage for Big Data at
reasonable cost

Storing Big Data using traditional storage can be expensive. Hadoop is built around commodity hardware.
Hence it can provide fairly large storage for a reasonable cost. Hadoop has been used in the field at Peta
byte scale.

One study by Cloudera suggested that Enterprises usually spend around $25,000 to $50,000 dollars per
tera byte per year. With Hadoop this cost drops to few thousands of dollars per tera byte per year. And
hardware gets cheaper and cheaper this cost continues to drop.

More info : Chapter 8, Hadoop Distributed File System (HDFS) -- Introduction [25]
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3.2.  Hadoop allows to capture new or more da-
ta

Some times organizations don't capture a type of data, because it was too cost prohibitive to store it. Since
Hadoop provides storage at reasonable cost, this type of data can be captured and stored.

One example would be web site click logs. Because the volume of these logs can be very high, not many
organizations captured these. Now with Hadoop it is possible to capture and store the logs

3.3.  With Hadoop, you can store data longer
To manage the volume of data stored, companies periodically purge older data. For example only logs
for the last 3 months could be stored and older logs were deleted. With Hadoop it is possible to store the
historical data longer. This allows new analytics to be done on older historical data.

For example, take click logs from a web site. Few years ago, these logs were stored for a brief period of
time to calculate statics like popular pages ..etc. Now with Hadoop it is viable to store these click logs
for longer period of time.

3.4.  Hadoop provides scalable analytics
There is no point in storing all the data, if we can't analyze them. Hadoop not only provides distributed
storage, but also distributed processing as well. Meaning we can crunch a large volume of data in parallel.
The compute framework of Hadoop is called Map Reduce. Map Reduce has been proven to the scale of
peta bytes.

Chapter 9, Introduction To MapReduce [31]

3.5.  Hadoop provides rich analytics
Native Map Reduce supports Java as primary programming language. Other languages like Ruby, Python
and R can be used as well.

Of course writing custom Map Reduce code is not the only way to analyze data in Hadoop. Higher level
Map Reduce is available. For example a tool named Pig takes english like data flow language and translates
them into Map Reduce. Another tool Hive, takes SQL queries and runs them using Map Reduce.

Business Intelligence (BI) tools can provide even higher level of analysis. Quite a few BI tools can work
with Hadoop and analyze data stored in Hadoop. For a list of BI tools that support Hadoop please see this
chapter : Chapter 13,  Business Intelligence Tools For Hadoop and Big Data  [52]
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Chapter 4. Big Data

4.1. What is Big Data?

You probably heard the term Big Data -- it is one of the most hyped terms now. But what exactly is big data?

Big Data is very large, loosely structured data set that defies traditional storage

4.2. Human Generated Data and Machine Gen-
erated Data

Human Generated Data is emails, documents, photos and tweets. We are generating this data faster than
ever. Just imagine the number of videos uploaded to You Tube and tweets swirling around. This data can
be Big Data too.

Machine Generated Data is a new breed of data. This category consists of sensor data, and logs generated
by 'machines' such as email logs, click stream logs, etc. Machine generated data is orders of magnitude
larger than Human Generated Data.

Before 'Hadoop' was in the scene, the machine generated data was mostly ignored and not captured. It is
because dealing with the volume was NOT possible, or NOT cost effective.
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4.3. Where does Big Data come from
Original big data was the web data -- as in the entire Internet! Remember Hadoop was built to index the
web. These days Big data comes from multiple sources.

• Web Data -- still it is big data

• Social media data : Sites like Facebook, Twitter, LinkedIn generate a large amount of data

• Click stream data : when users navigate a website, the clicks are logged for further analysis (like navi-
gation patterns). Click stream data is important in on line advertising and and E-Commerce

• sensor data : sensors embedded in roads to monitor traffic and misc. other applications generate a large
volume of data

4.4. Examples of Big Data in the Real world

• Facebook : has 40 PB of data and captures 100 TB / day

• Yahoo : 60 PB of data

• Twitter : 8 TB / day

• EBay : 40 PB of data, captures 50 TB / day
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Figure 4.1. Tidal Wave of Data

4.5. Challenges of Big Data

Sheer size of Big Data
Big data is... well... big in size! How much data constitute Big Data is not very clear cut. So lets not get
bogged down in that debate. For a small company that is used to dealing with data in gigabytes, 10TB of
data would be BIG. However for companies like Facebook and Yahoo, peta bytes is big.

Just the size of big data, makes it impossible (or at least cost prohibitive) to store in traditional storage
like databases or conventional filers.

We are talking about cost to store gigabytes of data. Using traditional storage filers can cost a lot of money
to store Big Data.

Big Data is unstructured or semi structured
A lot of Big Data is unstructured. For example click stream log data might look like  time stamp,
user_id, page, referrer_page
Lack of structure makes relational databases not well suited to store Big Data.

Plus, not many databases can cope with storing billions of rows of data.

No point in just storing big data, if we can't process it
Storing Big Data is part of the game. We have to process it to mine intelligence out of it. Traditional storage
systems are pretty 'dumb' as in they just store bits -- They don't offer any processing power.

The traditional data processing model has data stored in a 'storage cluster', which is copied over to a
'compute cluster' for processing, and the results are written back to the storage cluster.
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This model however doesn't quite work for Big Data because copying so much data out to a compute
cluster might be too time consuming or impossible. So what is the answer?

One solution is to process Big Data 'in place' -- as in a storage cluster doubling as a compute cluster.

4.6. How Hadoop solves the Big Data problem

Hadoop clusters scale horizontally
More storage and compute power can be achieved by adding more nodes to a Hadoop cluster. This elim-
inates the need to buy more and more powerful and expensive hardware.

Hadoop can handle unstructured / semi-structured data
Hadoop doesn't enforce a 'schema' on the data it stores. It can handle arbitrary text and binary data. So
Hadoop can 'digest' any unstructured data easily.

Hadoop clusters provides storage and computing
We saw how having separate storage and processing clusters is not the best fit for Big Data. Hadoop
clusters provide storage and distributed computing all in one.
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Chapter 5. Soft Introduction to Hadoop

5.1. MapReduce or Hadoop?
The goal here is to present an intro to Hadoop so simple that any programmer who reads it will be able to
write basic Hadoop solutions and run them on a Hadoop cluster.

First, however, let us have the two basic definitions - what is Hadoop and what is MapReduce?

MapReduce is a programming framework. Its description was published by Google in 2004 [http://
research.google.com/archive/mapreduce.html]. Much like other frameworks, such as Spring, Struts, or
MFC, the MapReduce framework does some things for you, and provides a place for you to fill in the
blanks. What MapReduce does for you is to organize your multiple computers in a cluster in order to
perform the calculations you need. It takes care of distributing the work between computers and of putting
together the results of each computer's computation. Just as important, it takes care of hardware and net-
work failures, so that they do not affect the flow of your computation. You, in turn, have to break your
problem into separate pieces which can be processed in parallel by multiple machines, and you provide
the code to do the actual calculation.

Hadoop is an open-source implementation of Google's distributed computing. It consists of two parts:
Hadoop Distributed File System (HDFS), which is modeled after Google's GFS, and Hadoop MapReduce,
which is modeled after Google's MapReduce. Google's system is proprietary code, so when Google teaches
college students the ideas of MapReduce programming, they, too, use Hadoop. To further emphasize the
difference we can note that the Hadoop engineers at Yahoo like to challenge the engineers at Google to
sorting competitions between Hadoop and MapReduce.

5.2. Why Hadoop?
We have already mentioned that the MapReduce framework is used at Google, Yahoo and Facebook. It has
seen rapid uptake in finance, retail, telecom, and the government. It is making inroads into life sciences.
Why is this?

Figure 5.1. Will you join the Hadoop dance?

The short answer is that it simplifies dealing with Big Data. This answer immediately resonates with
people, it is clear and succinct, but it is not complete. The Hadoop framework has built-in power and
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flexibility to do what you could not do before. In fact, Cloudera presentations at the latest O'Reilly Strata
conference mentioned that MapReduce was initially used at Google and Facebook not primarily for its
scalability, but for what it allowed you to do with the data.

In 2010, the average size of Cloudera's customers' clusters was 30 machines. In 2011 it was 70. When
people start using Hadoop, they do it for many reasons, all concentrated around the new ways of dealing
with the data. What gives them the security to go ahead is the knowledge that Hadoop solutions are mas-
sively scalable, as has been proved by Hadoop running in the world's largest computer centers and at the
largest companies.

As you will discover, the Hadoop framework organizes the data and the computations, and then runs your
code. At times, it makes sense to run your solution, expressed in a MapReduce paradigm, even on a single
machine.

But of course, Hadoop really shines when you have not one, but rather tens, hundreds, or thousands of
computers. If your data or computations are significant enough (and whose aren't these days?), then you
need more than one machine to do the number crunching. If you try to organize the work yourself, you
will soon discover that you have to coordinate the work of many computers, handle failures, retries, and
collect the results together, and so on. Enter Hadoop to solve all these problems for you. Now that you
have a hammer, everything becomes a nail: people will often reformulate their problem in MapReduce
terms, rather than create a new custom computation platform.

No less important than Hadoop itself are its many friends. The Hadoop Distributed File System (HDFS)
provides unlimited file space available from any Hadoop node. HBase is a high-performance unlimit-
ed-size database working on top of Hadoop. If you need the power of familiar SQL over your large data
sets, Pig provides you with an answer. While Hadoop can be used by programmers and taught to students
as an introduction to Big Data, its companion projects (including ZooKeeper, about which we will hear
later on) will make projects possible and simplify them by providing tried-and-proven frameworks for
every aspect of dealing with large data sets.

As you learn the concepts, and perfect your skills with the techniques described in this book you will
discover that there are many cases where Hadoop storage, Hadoop computation, or Hadoop's friends can
help you. Let's look at some of these situations.

• Do you find yourself often cleaning the limited hard drives in your company? Do you need to transfer
data from one drive to another, as a backup? Many people are so used to this necessity, that they consider
it an unpleasant but unavoidable part of life. Hadoop distributed file system, HDFS, grows by adding
servers. To you it looks like one hard drive. It is self-replicating (you set the replication factor) and thus
provides redundancy as a software alternative to RAID.

• Do your computations take an unacceptably long time? Are you forced to give up on projects because
you don’t know how to easily distribute the computations between multiple computers? MapReduce
helps you solve these problems. What if you don’t have the hardware to run the cluster? - Amazon EC2
can run MapReduce jobs for you, and you pay only for the time that it runs - the cluster is automatically
formed for you and then disbanded.

• But say you are lucky, and instead of maintaining legacy software, you are charged with building new,
progressive software for your company's work flow. Of course, you want to have unlimited storage,
solving this problem once and for all, so as to concentrate on what's really important. The answer is:
you can mount HDFS as a FUSE file system, and you have your unlimited storage. In our cases studies
we look at the successful use of HDFS as a grid storage for the Large Hadron Collider.

• Imagine you have multiple clients using your on line resources, computations, or data. Each single use
is saved in a log, and you need to generate a summary of use of resources for each client by day or by
hour. From this you will do your invoices, so it IS important. But the data set is large. You can write
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a quick MapReduce job for that. Better yet, you can use Hive, a data warehouse infrastructure built on
top of Hadoop, with its ETL capabilities, to generate your invoices in no time. We'll talk about Hive
later, but we hope that you already see that you can use Hadoop and friends for fun and profit.

Once you start thinking without the usual limitations, you can improve on what you already do and come
up with new and useful projects. In fact, this book partially came about by asking people how they used
Hadoop in their work. You, the reader, are invited to submit your applications that became possible with
Hadoop, and I will put it into Case Studies (with attribution :) of course.

5.3. Meet the Hadoop Zoo
QUINCE: Is all our company here?

BOTTOM: You were best to call them generally, man by man, according to the script.

Shakespeare, "Midsummer Night's Dream"  [http://shakespeare.mit.edu/midsummer/full.html]

There are a number of animals in the Hadoop zoo, and each deals with a certain aspect of Big Data. Let
us illustrate this with a picture, and then introduce them one by one.

Figure 5.2. The Hadoop Zoo

HDFS - Hadoop Distributed File System
HDFS, or the Hadoop Distributed File System, gives the programmer unlimited storage (fulfilling a cher-
ished dream for programmers). However, here are additional advantages of HDFS.

• Horizontal scalability. Thousands of servers holding petabytes of data. When you need even more stor-
age, you don't switch to more expensive solutions, but add servers instead.

• Commodity hardware. HDFS is designed with relatively cheap commodity hardware in mind. HDFS
is self-healing and replicating.

• Fault tolerance. Every member of the Hadoop zoo knows how to deal with hardware failures. If you
have 10 thousand servers, then you will see one server fail every day, on average. HDFS foresees that
by replicating the data, by default three times, on different data node servers. Thus, if one data node
fails, the other two can be used to restore the third one in a different place.

HDFS implementation is modeled after GFS, Google Distributed File system, thus you can read the first
paper on this, to be found here: http://labs.google.com/papers/gfs.html.

Hadoop, the little elephant
Hadoop organizes your computations using its MapReduce part. It reads the data, usually from its storage,
the Hadoop Distributed File System (HDFS), in an optimal way. However, it can read the data from other
places too, including mounted local file systems, the web, and databases. It divides the computations
between different computers (servers, or nodes). It is also fault-tolerant.

If some of your nodes fail, Hadoop knows how to continue with the computation, by re-assigning the
incomplete work to another node and cleaning up after the node that could not complete its task. It also
knows how to combine the results of the computation in one place.
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HBase, the database for Big Data
"Thirty spokes share the wheel's hub, it is the empty space that make it useful" - Tao Te Ching (  translated
by Gia-Fu Feng and Jane English)  [http://terebess.hu/english/tao/gia.html]

Not properly an animal, HBase is nevertheless very powerful. It is currently denoted by the letter H with
a base clef. If you think this is not so great, you are right, and the HBase people are thinking of changing
the logo. HBase is a database for Big Data, up to millions of columns and billions of rows.

Another feature of HBase is that it is a key-value database, not a relational database. We will get into the
pros and cons of these two approaches to databases later, but for now let's just note that key-value databases
are considered as more fitting for Big Data. Why? Because they don't store nulls! This gives them the
appellation of "sparse," and as we saw above, Tao Te Chin says that they are useful for this reason.

ZooKeeper
Every zoo has a zoo keeper, and the Hadoop zoo is no exception. When all the Hadoop animals want to
do something together, it is the ZooKeeper who helps them do it. They all know him and listen and obey
his commands. Thus, the ZooKeeper is a centralized service for maintaining configuration information,
naming, providing distributed synchronization, and providing group services.

ZooKeeper is also fault-tolerant. In your development environment, you can put the zookeeper on one
node, but in production you usually run it on an odd number of servers, such as 3 or 5.

Hive - data warehousing
Hive: "I am Hive, I let you in and out of the HDFS cages, and you can talk SQL to me!"

Hive is a way for you to get all the honey, and to leave all the work to the bees. You can do a lot of
data analysis with Hadoop, but you will also have to write MapReduce tasks. Hive takes that task upon
itself. Hive defines a simple SQL-like query language, called QL, that enables users familiar with SQL
to query the data.

At the same time, if your Hive program does almost what you need, but not quite, you can call on your
MapReduce skill. Hive allows you to write custom mappers and reducers to extend the QL capabilities.

Pig - Big Data manipulation
Pig: "I am Pig, I let you move HDFS cages around, and I speak Pig Latin."

Pig is called pig not because it eats a lot, although you can imagine a pig pushing around and consuming
big volumes of information. Rather, it is called pig because it speaks Pig Latin. Others who also speak this
language are the kids (the programmers) who visit the Hadoop zoo.

So what is Pig Latin that Apache Pig speaks? As a rough analogy, if Hive is the SQL of Big Data, then Pig
Latin is the language of the stored procedures of Big Data. It allows you to manipulate large volumes of
information, analyze them, and create new derivative data sets. Internally it creates a sequence of MapRe-
duce jobs, and thus you, the programmer-kid, can use this simple language to solve pretty sophisticated
large-scale problems.

5.4. Hadoop alternatives
Now that we have met the Hadoop zoo, we are ready to start our excursion. Only one thing stops us at this
point - and that is, a gnawing doubt, are we in the right zoo? Let us look at some alternatives to dealing
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with Big Data. Granted, our concentration here is Hadoop, and we may not give justice to all the other
approaches. But we will try.

Large data storage alternatives
HDFS is not the only, and in fact, not the earliest or the latest distributed file system. CEPH claims to be
more flexible and to remove the limit on the number of files. HDFS stores all of its file information in
the memory of the server which is called the NameNode. This is its strong point - speed - but it is also its
Achilles' heel! CEPH, on the other hand, makes the function of the NameNode completely distributed.

Another possible contender is ZFS, an open-source file system from SUN, and currently Oracle. Intended
as a complete redesign of file system thinking, ZFS holds a strong promise of unlimited size, robustness,
encryption, and many other desirable qualities built into the low-level file system. After all, HDFS and its
role model GFS both build on a conventional file system, creating their improvement on top of it, and the
premise of ZFS is that the underlying file system should be redesigned to address the core issues.

I have seen production architectures built on ZFS, where the data storage requirements were very clear
and well-defined and where storing data from multiple field sensors was considered better done with ZFS.
The pros for ZFS in this case were: built-in replication, low overhead, and - given the right structure of
records when written - built-in indexing for searching. Obviously, this was a very specific, though very
fitting solution.

While other file system start out with the goal of improving on HDFS/GFS design, the advantage of HDFS
is that it is very widely used. I think that in evaluating other file systems, the reader can be guided by
the same considerations that led to the design of GFS: its designers analyzed prevalent file usage in the
majority of their applications, and created a file system that optimized reliability for that particular type of
usage. The reader may be well advised to compare the assumptions of GFS designers with his or her case,
and decide if HDFS fits the purpose, or if something else should be used in its place.

We should also note here that we compared Hadoop to other open-source storage solutions. There are
proprietary and commercial solutions, but such comparison goes beyond the scope of this introduction.

Large database alternatives
The closest to HBase is Cassandra. While HBase is a near-clone of Google’s Big Table, Cassandra purports
to being a “Big Table/Dynamo hybrid”. It can be said that while Cassandra’s “writes-never-fail” emphasis
has its advantages, HBase is the more robust database for a majority of use-cases. HBase being more
prevalent in use, Cassandra faces an uphill battle - but it may be just what you need.

Hypertable is another database close to Google's Big Table in features, and it claims to run 10 times faster
than HBase. There is an ongoing discussion between HBase and Hypertable proponents, and the authors
do not want to take sides in it, leaving the comparison to the reader. Like Cassandra, Hypertable has fewer
users than HBase, and here too, the reader needs to evaluate the speed of Hypertable for his application,
and weigh it with other factors.

MongoDB (from "humongous") is a scalable, high-performance, open source, document-oriented
database. Written in C++, MongoDB features document-oriented storage, full index on any attribute,
replication and high availability, rich, document-based queries, and it works with MapReduce. If you are
specifically processing documents and not arbitrary data, it is worth a look.

Other open-source and commercial databases that may be given consideration include Vertica with its
SQL support and visualization, Cloudran for OLTP, and Spire.

In the end, before embarking on a development project, you will need to compare alternatives. Below is
an example of such comparison. Please keep in mind that this is just one possible point of view, and that
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the specifics of your project and of your view will be different. Therefore, the table below is mainly to
encourage the reader to do a similar evaluation for his own needs.

Table 5.1. Comparison of Big Data

DB Pros/Cons HBase Cassandra Vertica CloudTran HyperTable

Pros Key-based
NoSQL, active
user commu-
nity, Cloudera
support

Key-based
NoSQL, active
user communi-
ty, Amazon's
Dynamo on
EC2

Closed-source,
SQL-standard,
easy to use,
visualization
tools, complex
queries

Closed-source
optimized on
line transaction
processing

Drop-in re-
placement for
HBase, open-
source, ar-
guably much
faster

Cons Steeper learn-
ing curve, less
tools, simpler
queries

Steeper learn-
ing curve, less
tools, simpler
queries

Vendor lock-in,
price, RDMS/
BI - may not fit
every applica-
tion

Vendor lock-in,
price, transac-
tion-optimized,
may not fit ev-
ery application,
needs wider
adoption

New, needs us-
er adoption and
more testing

Notes Good for new,
long-term de-
velopment

Easy to set up,
no dependence
on HDFS, fully
distributed ar-
chitecture

Good for exist-
ing SQL-based
applications
that needs fast
scaling

Arguably the
best OLTP

To be kept in
mind as a possi-
ble alternative

5.5. Alternatives for distributed massive com-
putations

Here too, depending upon the type of application that the reader needs, other approaches make prove more
useful or more fitting to the purpose.

The first such example is the JavaSpaces paradigm. JavaSpaces is a giant hash map container. It pro-
vides the framework for building large-scale systems with multiple cooperating computational nodes. The
framework is thread-safe and fault-tolerant. Many computers working on the same problem can store their
data in a JavaSpaces container. When a node wants to do some work, it finds the data in the container,
checks it out, works on it, and then returns it. The framework provides for atomicity. While the node is
working on the data, other nodes cannot see it. If it fails, its lease on the data expires, and the data is
returned back to the pool of data for processing.

The champion of JavaSpaces is a commercial company called GigaSpaces. The license for a JavaSpaces
container from GigaSpaces is free - provided that you can fit into the memory of one computer. Beyond
that, GigaSpaces has implemented unlimited JavaSpaces container where multiple servers combine their
memories into a shared pool. GigaSpaces has created a big sets of additional functionality for building
large distributed systems. So again, everything depends on the reader's particular situation.

GridGain is another Hadoop alternative. The proponents of GridGain claim that while Hadoop is a compute
grid and a data grid, GridGain is just a compute grid, so if your data requirements are not huge, why bother?
They also say that it seems to be enormously simpler to use. Study of the tools and prototyping with them
can give one a good feel for the most fitting answer.

Terracotta is a commercial open source company, and in the open source realm it provides Java big cache
and a number of other components for building large distributed systems. One of its advantages is that it
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allows existing applications to scale without a significant rewrite. By now we have gotten pretty far away
from Hadoop, which proves that we have achieved our goal - give the reader a quick overview of various
alternatives for building large distributed systems. Success in whichever way you choose to go!

5.6. Arguments for Hadoop
We have given the pro arguments for the Hadoop alternatives, but now we can put in a word for the lit-
tle elephant and its zoo. It boasts wide adoption, has an active community, and has been in production
use in many large companies. I think that before embarking on an exciting journey of building large dis-
tributed systems, the reader will do well to view the presentation by Jeff Dean, a Google Fellow, on the
"Design, Lessons, and Advice from Building Large Distributed Systems"  found on SlideShare  [http://
www.slideshare.net/xlight/google-designs-lessons-and-advice-from-building-large-distributed-systems]

Google has built multiple applications on GFS, MapReduce, and Big Table, which are all implemented
as open-source projects in the Hadoop zoo. According to Jeff, the plan is to continue with 1,000,000 to
10,000,000 machines spread at 100s to 1000s of locations around the world, and as arguments go, that
is pretty big.

5.7. Say "Hi!" to Hadoop
Enough words, let’s look at some code! First, however, let us explain how MapReduce works in human
terms.

A dialog between you and Hadoop
Imagine you want to count word frequencies in a text. It may be a book or a document, and word frequencies
may tell you something about its subject. Or it may be a web access log, and you may be looking for
suspicious activity. It may be a log of any customer activity, and you might be looking for most frequent
customers, and so on.

In a straightforward approach, you would create an array or a hash table of words, and start counting the
word's occurrences. You may run out of memory, or the process may be slow. If you try to use multiple
computers all accessing shared memory, the system immediately gets complicated, with multi-threading,
and we have not even thought of hardware failures. Anyone who has gone through similar exercises knows
how quickly a simple task can become a nightmare.

Enter Hadoop which offers its services. The following dialog ensues.

Hadoop: How can I help?

You: I need to count words in a document.

Hadoop: I will read the words and give them to you, one at a time, can you count that?

You: Yes, I will assign a count of 1 to each and give them back to you.

Hadoop: Very good. I will sort them, and will give them back to you in groups, grouping the same words
together. Can you count that?

You: Yes, I will go through them and give you back each word and its count.

Hadoop: I will record each word with its count, and we’ll be done.
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I am not pulling your leg: it is that simple. That is the essence of a MapReduce job. Hadoop uses the cluster
of computers (nodes), where each node reads words in parallel with all others (Map), then the nodes collect
the results (Reduce) and writes them back. Notice that there is a sort step, which is essential to the solution,
and is provided for you - regardless of the size of the data. It may take place all in memory, or it may spill
to disk. If any of the computers go bad, their tasks are assigned to the remaining healthy ones.

How does this dialog look in the code?

Geek Talk
Hadoop: How can I help?

Hadoop:

                    public class WordCount extends Configured implements Tool {
                    public int run(String[] args) throws Exception {
                

You: I need to count words in a document.

You:

                    Job job = new Job(getConf());
                    job.setJarByClass(WordCount.class);
                    job.setJobName("wordcount");
                

Hadoop: I will read the words and give them to you, one at a time, can you count that?

Hadoop

                    public static class Map extends Mapper <LongWritable, Text, Text, IntWritable> {
                    public void map(LongWritable key, Text value, Context context)
                    throws IOException, InterruptedException {
                    String line = value.toString();
                

You: Yes, I will assign a count of 1 to each and give them back to you.

You

                    String [] tokens = line.split(" ,");
                    for (String token: tokens) {
                    Text word = new Text();
                    word.set(token);
                    context.write(word, new IntWritable(1));
                    }
                

You have done more than you promised - you can process multiple words on the same line, if Hadoop
chooses to give them to you. This follows the principles of defensive programming. Then you immediately
realize that each input line can be as long as it wants. In fact, Hadoop is optimized to have the best overall
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throughput on large data sets. Therefore, each input can be a complete document, and you are counting
word frequencies in documents. If the documents come from the Web, for example, you already have the
scale of computations needed for such tasks.

Hadoop: Very good. I will sort them, and will give them back to you in groups, grouping the same words
together. Can you count that?

Listing 1.5 Hadoop

                    public static class Reduce extends Reducer <Text, IntWritable, Text, IntWritable> {
                    @Override public void reduce(Text key, Iterable<IntWritable> values, Context context)
                    throws IOException, InterruptedException {
                

You: Yes, I will go through them and give you back each word and its count.

You

                    int sum = 0;
                    for (IntWritable val : values) {
                    sum += val.get();
                    }
                    context.write(key, new IntWritable(sum));
                

Hadoop: I will record each word with its count, and we’ll be done.

Hadoop:

                    // This is invisible - no code
                    // but you can trust that he does it
                    }
                

Let me see, who is Map and who is Reduce?

MapReduce (or MR, if you want to impress your friends) has mappers and reducers, as can be seen by
their names. What are they?

Mapper is the code that you supply to process one entry. This entry can be a line from a book or from a
log, a temperature or financial record, etc. In our example it was counting to 1. In a different use case, it
may be a name of an archive file, which the Mapper will unpack and process.

When the Mapper is done processing, it returns the results to the framework. The return takes the form of
a Map, which consists of a key and a value. In our case, the key was the word. It can be a hash of a file,
or any other important characteristic of your value. The keys that are the same will be combined, so you
select them in such a way that elements that you want to be processed together will have the same key.

Finally, your Mapper code gives the Map to the framework. This is called emitting the map. It is expressed
by the following code line:

Listing 1.8 Emitting the map
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                    context.write(key, value);
                

Now the framework sorts your maps. Sorting is an interesting process and it occurs a lot in computer pro-
cessing, so we will talk in more detail about it in the next chapter. Having sorted the maps, the framework
gives them back to you in groups. You supply the code which tells it how to process each group. This is
the Reducer. The key that you gave to the framework is the same key that it returns to your Reducer. In
our case, it was a word found in a document.

In the code, this is how we went through a group of values:

Going through values in the reducer

                    int sum = 0;
                    for (IntWritable val : values) {
                    sum += val.get();
                    }
                

While the key was now the word, the value was count - which, as you may remember, we have set to 1
for each word. These are being summed up.

Finally, you return the reduced result to the framework, and it outputs results to a file.

Reducer emits the final map

                    context.write(key, new IntWritable(sum));
                

5.8. Chapter Summary
In this chapter we were introduced to the MapReduce/Hadoop framework and wrote our first Hadoop
program, which can actually accomplish quite a lot. We got a first look at when Hadoop can be useful. If
you did the labs and exercises, you can now safely state that you are an intermediate Hadoop programmer,
which is no small thing.

In the next chapter we will go a little deeper into sorting. There are situations where more control over
sorting is required. It will also give you a better feeling for Hadoop internals, so that after reading it you
will feel closer to a seasoned veteran than to a novice. Still, we will try to make it a breeze, keeping in line
with the motto of this book, "Who said Hadoop is hard?".
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Chapter 6. Hadoop for Executives
This section is a quick 'fact sheet' in a Q&A format.

What is Hadoop?
Hadoop is an open source software stack that runs on a cluster of machines. Hadoop provides distributed
storage and distributed processing for very large data sets.

What is the license of Hadoop?
Hadoop is open source software. It is an Apache project released under Apache Open Source License v2.0.
This license is very commercial friendly.

Who contributes to Hadoop?
Originally Hadoop was developed and open sourced by Yahoo. Now Hadoop is developed as an Apache
Software Foundation project and has numerous contributors from Cloudera, Horton Works, Facebook, etc.

Isn't Hadoop used by foo-foo social media companies
and not by enterprises

Hadoop had its start in a Web company. It was adopted pretty early by social media companies because
the companies had Big Data problems and Hadoop offered a solution.

However, Hadoop is now making inroads into Enterprises.

I am not sure my company has a big data problem
Hadoop is designed to deal with Big Data. So if you don't have a 'Big Data Problem', then Hadoop probably
isn't the best fit for your company. But before you stop reading right here, please read on :-)

How much data is considered Big Data, differs from company to company. For some companies, 10 TB
of data would be considered Big Data; for others 1 PB would be 'Big Data'. So only you can determine
how much is Big Data.

Also, if you don't have a 'Big Data problem' now, is that because you are not capturing some data? In
some scenarios, companies chose to forgo capturing data, because there wasn't a feasible way to store and
process it. Now that Hadoop can help with Big Data, it may be possible to start capturing data that wasn't
captured before.

How much does it cost to adopt Hadoop?
Hadoop is open source. The software is free. However running Hadoop does have other cost components.

• Cost of hardware : Hadoop runs on a cluster of machines. The cluster size can be anywhere from 10
nodes to 1000s of nodes. For a large cluster, the hardware costs will be significant.

• The cost of IT / OPS for standing up a large Hadoop cluster and supporting it will need to be factored in.

• Since Hadoop is a newer technology, finding people to work on this ecosystem is not easy.
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See here for complete list of Chapter 15, Hadoop Challenges [57]

What distributions to use?
Please see Chapter 11, Hadoop Distributions [43]

What are the some of the use cases for Hadoop?
Please see Chapter 10, Hadoop Use Cases and Case Studies [37]
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Chapter 7. Hadoop for Developers
This section is a quick 'fact sheet' in a Q&A format.

What is Hadoop?

Hadoop is an open source software stack that runs on a cluster of machines. Hadoop provides distributed
storage and distributed processing for very large data sets.

Is Hadoop a fad or here to stay?

Sure, Hadoop and Big Data are all the rage now. But Hadoop does solve a real problem and it is a safe
bet that it is here to stay.

Below is a graph of Hadoop job trends from Indeed.com [http://www.indeed.com/jobtrends?q=hadoop].
As you can see, demand for Hadoop skills has been up and up since 2009. So Hadoop is a good skill to have!

What skills do I need to learn Hadoop?

A hands-on developer or admin can learn Hadoop. The following list is a start - in no particular order

• Hadoop is written in Java. So knowing Java helps

• Hadoop runs on Linux, so you should know basic Linux command line navigation skills

• Some Linux scripting skills will go a long way

What kind of technical roles are available in Hadoop?

The following should give you an idea of the kind of technical roles in Hadoop.
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Table 7.1.

Job Type Job functions Skills

Hadoop Developer develops MapReduce jobs, de-
signs data warehouses

Java, Scripting, Linux

Hadoop Admin manages Hadoop cluster, designs
data pipelines

Linux administration, Network
Management, Experience in
managing large cluster of ma-
chines

Data Scientist Data mining and figuring out hid-
den knowledge in data

Math, data mining algorithms

Business Analyst Analyzes data! Pig, Hive, SQL superman, famil-
iarity with other BI tools

I am not a programmer, can I still use Hadoop?
Yes, you don't need to write Java Map Reduce code to extract data out of Hadoop. You can use Pig and
Hive. Both Pig and Hive offer 'high level' Map Reduce. For example you can query Hadoop using SQL
in Hive.

What kind of development tools are available for
Hadoop?

Hadoop development tools are still evolving. Here are a few:

• Karmasphere IDE : tuned for developing for Hadoop

• Eclipse and other Java IDEs : When writing Java code

• Command line editor like VIM : No matter what editor you use, you will be editing a lot of files / scripts.
So familiarity with CLI editors is essential.

Where can I learn more?
• Books

• Tom White's Hadoop Book : This is the 'Hadoop Bible'

• This book :-)

• Newsgroups : If you have any questions:

• Apache mailing lists [http://hadoop.apache.org/mailing_lists.html]

• Meetups : to meet like minded people. Find the one closest to you at meetup.com [http://
www.meetup.com]
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Chapter 8. Hadoop Distributed File
System (HDFS) -- Introduction

In this chapter we will learn about the Hadoop Distributed File System, also known as HDFS. When people
say 'Hadoop' it usually includes two core components : HDFS and MapReduce

HDFS is the 'file system' or 'storage layer' of Hadoop. It takes care of storing data -- and it can handle very
large amount of data (on a petabytes scale).

In this chapter, we will look at the concepts of HDFS

8.1. HDFS Concepts

Problem : Data is too big store in one computer

Today's big data is 'too big' to store in ONE single computer -- no matter how powerful it is and how much
storage it has. This eliminates lot of storage system and databases that were built for single machines. So
we are going to build the system to run on multiple networked computers. The file system will look like
a unified single file system to the 'outside' world

Hadoop solution : Data is stored on multiple computers

Problem : Very high end machines are expensive

Now that we have decided that we need a cluster of computers, what kind of machines are they? Traditional
storage machines are expensive with top-end components, sometimes with 'exotic' components (e.g. fiber
channel for disk arrays, etc). Obviously these computers cost a pretty penny.
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Figure 8.1. Cray computer

We want our system to be cost-effective, so we are not going to use these 'expensive' machines. Instead
we will opt to use commodity hardware. By that we don't mean cheapo desktop class machines. We will
use performant server class machines -- but these will be commodity servers that you can order from any
of the vendors (Dell, HP, etc)

So what do these server machines look like? Look at the Chapter 14, Hardware and Software for
Hadoop [55] guide.

Hadoop solution : Run on commodity hardware

Problem : Commodity hardware will fail

In the old days of distributed computing, failure was an exception, and hardware errors were not tolerated
well. So companies providing gear for distributed computing made sure their hardware seldom failed. This
is achieved by using high quality components, and having backup systems (in come cases backup to backup
systems!). So the machines are engineered to withstand component failures, but still keep functioning.
This line of thinking created hardware that is impressive, but EXPENSIVE!

On the other hand we are going with commodity hardware. These don't have high end whiz bang com-
ponents like the main frames mentioned above. So they are going to fail -- and fail often. We need to
prepared for this. How?

The approach we will take is we build the 'intelligence' into the software. So the cluster software will
be smart enough to handle hardware failure. The software detects hardware failures and takes corrective
actions automatically -- without human intervention. Our software will be smarter!
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Hadoop solution : Software is intelligent enough to deal with hard-
ware failure

Problem : hardware failure may lead to data loss

So now we have a network of machines serving as a storage layer. Data is spread out all over the nodes.
What happens when a node fails (and remember, we EXPECT nodes to fail). All the data on that node will
become unavailable (or lost). So how do we prevent it?

One approach is to make multiple copies of this data and store them on different machines. So even if
one node goes down, other nodes will have the data. This is called 'replication'. The standard replication
is 3 copies.

Figure 8.2. HDFS file replication

Hadoop Solution : replicate (duplicate) data

Problem : how will the distributed nodes co-ordinate
among themselves

Since each machine is part of the 'storage', we will have a 'daemon' running on each machine to manage
storage for that machine. These daemons will talk to each other to exchange data.

OK, now we have all these nodes storing data, how do we coordinate among them? One approach is to
have a MASTER to be the coordinator. While building distributed systems with a centralized coordinator
may seem like an odd idea, it is not a bad choice. It simplifies architecture, design and implementation
of the system

So now our architecture looks like this. We have a single master node and multiple worker nodes.
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Figure 8.3. HDFS master / worker design

Hadoop solution : There is a master node that co-ordinates all the
worker nodes

8.1.  HDFS Architecture
Now we have pretty much arrived at the architecture of HDFS

Figure 8.4. HDFS architecture

Lets go over some principles of HDFS. First lets consider the parallels between 'our design' and the actual
HDFS design.

Master / worker design
In an HDFS cluster, there is ONE master node and many worker nodes. The master node is called the
Name Node (NN) and the workers are called Data Nodes (DN). Data nodes actually store the data. They
are the workhorses.

Name Node is in charge of file system operations (like creating files, user permissions, etc.). Without it,
the cluster will be inoperable. No one can write data or read data.
This is called a Single Point of Failure. We will look more into this later.
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Runs on commodity hardware
As we saw hadoop doesn't need fancy, high end hardware. It is designed to run on commodity hardware.
The Hadoop stack is built to deal with hardware failure and the file system will continue to function even
if nodes fail.

HDFS is resilient (even in case of node failure)
The file system will continue to function even if a node fails. Hadoop accomplishes this by duplicating
data across nodes.

Data is replicated
So how does Hadoop keep data safe and resilient in case of node failure? Simple, it keeps multiple copies
of data around the cluster.

To understand how replication works, lets look at the following scenario. Data segment #2 is replicated 3
times, on data nodes A, B and D. Lets say data node A fails. The data is still accessible from nodes B and D.

HDFS is better suited for large files
Generic file systems, say like Linux EXT file systems, will store files of varying size, from a few bytes
to few gigabytes. HDFS, however, is designed to store large files. Large as in a few hundred megabytes
to a few gigabytes.

Why is this?

HDFS was built to work with mechanical disk drives, whose capacity has gone up in recent years. However,
seek times haven't improved all that much. So Hadoop tries to minimize disk seeks.

Figure 8.5. Disk seek vs scan

Files are write-once only (not updateable)
HDFS supports writing files once (they cannot be updated). This is a stark difference between HDFS and
a generic file system (like a Linux file system). Generic file systems allows files to be modified.

However appending to a file is supported. Appending is supported to enable applications like HBase.
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Figure 8.6. HDFS file append
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Chapter 9. Introduction To MapReduce

9.1. How I failed at designing distributed pro-
cessing

Once, while working on an eDiscovery system, before Hadoop was born, I had to scale up my computa-
tions: whatever I had done on one computer had to work on thirty computers which we had in our racks.
I chose to install JBoss on every machine, only to use its JMS messaging, and my computers were talking
to each other through that. It was working, but it had its drawbacks:

1. It had a concept of master and workers, and the master was dividing the job into tasks for the workers,
but this preparation, which happened at the start of the job, took a long time.

2. The system was not stable: some tasks were forgotten and somehow never performed.

3. If a worker went down, he stopped working, that is, he did not pick up more work, but the work left
undone was in an unknown stage.

4. All of the data resided on a central file server. When 30 PC's were trying to read and write this data at
the same time, the system gave random errors and reported file status incorrectly.

5. Had my system worked properly, I would have discovered other problems, which I did not get far
enough to see: IO and network bottlenecks.

That was quite upsetting. I started having dreams about stacks of Linux servers, piled one up-
on another. Then I read about the Fallacies of distributed computing [http://en.wikipedia.org/wi-
ki/Fallacies_of_Distributed_Computing] and realized that I had violated all of them.

Figure 9.1. Dreams
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9.2.  How MapReduce does it
At the risk of being a spoiler [http://en.wikipedia.org/wiki/Spoiler_(media)], I will describe how the
MapReduce part of Hadoop addresses the problems above. Now, if you don't want to take it easy but would
rather design a good multiprocessing system yourself, then take a pause here, create the design, and email
it to us  [authors@hadoopilluminated.com]. I will trust you that did not cheat by looking ahead. Whether
you do this or not, looking at the MapReduce solution gives you an appreciation of how much it provides.

1. MapReduce has a master and workers, but it is not all push or pull, rather, the work is a collaborative
effort between them.

2. The master assigns a work portion to the next available worker; thus, no work portion is forgotten or
left unfinished.

3. Workers send periodic heartbeats to the master. If the worker is silent for a period of time (usually 10
minutes), then the master presumes this worker crashed and assigns its work to another worker. The
master also cleans up the unfinished portion of the crashed worker.

4. All of the data resides in HDFS, which avoids the central server concept, with its limitations on con-
current access and on size. MapReduce never updates data, rather, it writes new output instead. This is
one of the features of functional programming, and it avoids update lockups.

5. MapReduce is network and rack aware, and it optimizes the network traffic.

9.3.  How MapReduce really does it
In the previous section I have shown how MapReduce resolves the common instability problems found in
homegrown distributed systems. But I really just hinted at it, so now let us explain this in a little more detail.

Masters and slaves
Nobody likes to be a slave, and up until now we avoided this terminology, calling them workers. In that,
we followed the remark from the movie Big Lebowski" [http://www.imdb.com/title/tt0118715/quotes]:
"Also, Dude, chinaman is not the preferred nomenclature. Asian-American, please." However, "slave" is
the actual term to be used.

MapReduce has a master and slaves, and they collaborate on getting the work done. The master is listed
in the "masters" configuration file, and the slaves are listed in the "slaves", and in this way they know
about each other. Furthermore, to be a real "master", the node must run a daemon called the "Job Tracker"
daemon. The slave, to be able to do its work, must run another daemon, called the "Tasktracker" daemon.

The master does not divide all the work beforehand, but has an algorithm on how to assign the next portion
of the work. Thus, no time is spent up front, and the job can begin right away. This division of labor,
how much to give to the next Tasktracker, is called "split", and you have control over it. By default, the
input file is split into chunks of about 64MB in size. About, because complete lines in the input file have
to be preserved.

MapReduce is stable
Recall that in my system I gave the responsibility for selecting the next piece of work to the workers. This
created two kinds of problems. When a worker crashed, nobody knew about it. Of course, the worker would
mark the work as "done" after it was completed, but when it crashed, there was nobody to do this for him, so
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it kept hanging. You needed watchers over watchers, and so on. Another problem would be created when
two overzealous workers wanted the same portion. There was a need to somehow coordinate this effort.
My solution was a flag in the database, but then this database was becoming the real-time coordinator for
multiple processes, and it is not very good at that. You can image multiple scenarios when this would fail.

By contrast, in MapReduce the Job Tracker doles out the work. There is no contention: it takes the next
split and assigns it to the next available Tasktracker. If a Tasktracker crashes, it stops sending heartbeats
to the Job Tracker.

MapReduce uses functional programming
MapReduce works on data that resides in HDFS. As described in the previous section, HDFS (Hadoop
Distributed File System) is unlimited and linearly scalable, that is, it grows by adding servers. Thus the
problem of a central files server, with its limited capacity, is eliminated.

Moreover, MapReduce never updates data, rather, it writes a new output instead. This is one of the prin-
ciples of  functional programming  [http://en.wikipedia.org/wiki/Functional_programming], and it avoids
update lockups. It also avoids the need to coordinate multiple processes writing to the same file; instead,
each Reducer writes to its own output file in an HDFS directory, designated as output for the given job. The
Reducer's output file is named using the Reducer ID, which is unique. In further processing, MapReduce
will treat all of the files in the input directory as its input, and thus having multiple files either in the input
or the output directory is no problem.

MapReduce optimizes network traffic
As it turns out, network bandwidth is probably the most precious and scarce resource in a distributed system
and should be used with care. It is a problem which I have not seen even in my eDiscovery application,
because it needs to be correct and stable before optimizing, and getting there is not an easy task.

MapReduce, however, notes where the data is (by using the IP address of the block of data that needs to
be processed) and it also knows where the Task Tracker is (by using its IP address). If it can, MapReduce
assigns the computation to the server which has the data locally, that is, whose IP address is the same as
that of the data. Every Task Tracker has a copy of the code that does the computation (the job's jar, in the
case of Java code), and thus the computation can begin.

If local computation is not possible, MapReduce can select the server that is at least closest to the data, so
that the network traffic will go through the least number of hops. It does it by comparing the IPs, which
have the distance information encoded. Naturally, servers in the same rack are considered closer to each
other than servers on different racks. This property of MapReduce to follow the network configuration is
called "rack awareness". You set the rack information in the configuration files and reap the benefits.

MapReduce has Mappers and Reducers
This may sound like a tautology [http://en.wikipedia.org/wiki/Tautology], but without Mappers and Re-
ducers what we have described so far can only help us produce one line of output per one line of input. To
go any further, we need to introduce the computational capability of MapReduce. Let me give an example.
Suppose you want to output only unique values from your input, and drop all duplicates. That is, if in
processing a large amount of files you find another one with the same content as the previous one, you
don't really need it. It would be nice if you could assign a key to your input file, such as the MD5 hash
signature of the file, and then compare all signatures of all files.

Well, this is exactly what MapReduce does. It asks you to assign a key to your input value, and it then
sorts all your values by key. The files with the same content will have the same hash value, will end up
together in the sort order, and you will be able to drop them.
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Or say, you don't want to drop the inputs with the same key, but rather you want to analyze them. For
example, you may be reading financial records, checking account transactions, and you may want to group
all transaction for the same accounts together, so that you can calculate the balance. Again, MapReduce
has already done this for you: all records for the same account will be grouped together (the sorting being
done by the Hadoop framework), and all you have to do is calculate the total.

We can now introduce the concept of Mappers and Reducers: Mappers process, or understand the input,
and express this understanding by assigning the key, and potentially extracting or changing the value (such
as converting the currency). The Reducer receives all values with the same key, and can loop through
them, to perform any operation required.

The Mapper's pair of key and value, usually denoted as <key, value>, is called a map. The Mapper that
does the above calculation is called to "emit the map", and the Reducer then loops through all the maps,
and summarizes the results in some way.

A practical example
To explain the MapReduce calculation better, let me give you a practical example. In one ancient book
I read that to get around through the chambers of Heaven, you had to give a seal to the angel who was
guarding each door. The seal was to be created in your own thought: you concentrate on the mystical name
until it becomes a real physical seal. You then hand this seal to the angel, and he lets you in.

Figure 9.2. Angel checks the seal

To calculate the meaning of the seal, the angel had to take the numerical value assigned to each letter,
and add them up.

This then becomes the perfect analogy of the MapReduce calculation. Your value is the mystical name,
represented by the seal. It may be a simple string or a multi-dimensional object. From this value, you
calculate the key, or the sum total of each letter. This is the Mapper.

With this <key, value> combination you begin your travels. All the people who have the same key are
collected by the same angel in a certain chamber. This is your Reducer. The computation is parallel (each
person does his own travels) and scalable (there is no limit on the number of people traveling at the same
time). This is the MapReduce calculation. If one angel fails, another can take its place, because angels too
are defined by their names. Thus you have fault tolerance.

Another example
According to Michael Lynch, the founder of Autonomy,  Barack
Obama's Big Data won the US election [http://www.computerworld.com/s/arti-
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cle/9233587/Barack_Obama_39_s_Big_Data_won_the_US_election#disqus_thread]. The articles says
that the campaign carefully selected micro-segments of voters, analyzed their characteristics, and then ad-
dressed them directly. Michael is the creator of the Intelligent Data Operating Layer (IDOL), the enterprise
smart search, so he knows the technology in question.

One can imagine a MapReduce program that would accomplish this purpose as follows: read the person's
characteristics, assign him a hash code (mapper), collect all of the people with the same hash code and
analyze them (reducer). This is aptly illustrated in the following diagram.

Figure 9.3. Micro-targeting the electorate

This concludes our introduction to the MapReduce part of Hadoop, where our goal was to explain how
it works, without one line of code.

9.4.  Who invented this?

According to an article in "Wired" magazine entitled  "If Xerox PARC Invented the PC, Google Invent-
ed the Internet  [http://www.wired.com/wiredenterprise/2012/08/google-as-xerox-parc/all/] all of modern
computer science was invented at Google. Definitely the MapReduce technology was invented there, by
Jeff Dean and Sanjay Ghemawat. To prove the point, here are some "facts" about Jeff:

Jeff Dean once failed a Turing test when he correctly identified the 203rd Fibonacci number in less than
a second.

Jeff Dean compiles and runs his code before submitting it, but only to check for compiler and CPU bugs.
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The speed of light in a vacuum used to be about 35 mph. Then Jeff Dean spent a weekend optimizing
physics.

You can read the complete article by the two Google engineers, entitled MapReduce: Simplified Data Pro-
cessing on Large Clusters [http://research.google.com/archive/mapreduce.html] and decide for yourself.

9.5. The benefits of MapReduce programming
So what are the benefits of MapReduce programming? As you can see, it summarizes a lot of the experi-
ences of scientists and practitioners in the design of distributed processing systems. It resolves or avoids
several complications of distributed computing. It allows unlimited computations on an unlimited amount
of data. It actually simplifies the developer's life. And, although it looks deceptively simple, it is very
powerful, with a great number of sophisticated (and profitable) applications written in this framework.

In the other sections of this book we will introduce you to the practical aspects of MapReduce implemen-
tation. We will also show you how to avoid it, by using higher-level tools, 'cause not everybody likes to
write Java code. Then you will be able to see whether or not Hadoop is for you, or even invent a new
framework. Keep in mind though that other developers are also busy inventing new frameworks, so hurry
to read more.
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Chapter 10. Hadoop Use Cases and
Case Studies

This is a collection of some use cases of Hadoop. This is not meant to be an exhaustive list, but a sample
to give you some ideas.

A pretty extensive list is available at the Powered By Hadoop site [http://wiki.apache.org/hadoop/Pow-
eredBy]

10.1. Politics

2012 US Presidential Election
How Big Data help Obama win re-election [http://www.computerworld.com/s/ar-
ticle/9233587/Barack_Obama_39_s_Big_Data_won_the_US_election] - by Michael Lynch,
the founder of Autonomy [http://www.autonomy.com/] (cached copy [cached_reports/
Barack_Obama_Big_Data_won_the_US_election__Computerworld.pdf])

10.2. Data Storage

NetApp
NetApp collects diagnostic data from its storage systems deployed at customer sites. This data is used to
analyze the health of NetApp systems.

Problem:  NetApp collects over 600,000 data transactions weekly, consisting of unstructured logs and
system diagnostic information. Traditional data storage systems proved inadequate to capture and process
this data.

Solution:  A Cloudera Hadoop system captures the data and allows parallel processing of data.

Hadoop Vendor:  Cloudera

Cluster/Data size:  30+ nodes; 7TB of data / month

Links:
Cloudera case study [http://www.cloudera.com/content/dam/cloudera/Resources/PDF/
Cloudera_Case_Study_NetApp.pdf] (cached copy [cached_reports/Cloudera_Case_Study_NetApp.pdf])
(Published Sep 2012)

10.3. Financial Services

Dodd-Frank Compliance at a bank
A leading retail bank is using Cloudera and Datameer to validate data accuracy and quality to comply with
regulations like Dodd-Frank
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Problem:  The previous solution using Teradata and IBM Netezza was time consuming and complex, and
the data mart approach didn’t provide the data completeness required for determining overall data quality.

Solution:  A Cloudera + Datameer platform allows analyzing trillions of records which currently result in
approximately one terabyte per month of reports. The results are reported through a data quality dashboard.

Hadoop Vendor:  Cloudera + Datameer

Cluster/Data size:  20+ nodes; 1TB of data / month

Links:
Cloudera case study [http://www.cloudera.com/content/dam/cloudera/Resources/PDF/
connect_case_study_datameer_banking_financial.pdf] (cached copy [cached_reports/
connect_case_study_datameer_banking_financial.pdf]) (Published Nov 2012)

10.4. Health Care

Storing and processing Medical Records
Problem:  A health IT company instituted a policy of saving seven years of historical claims and remit
data, but its in-house database systems had trouble meeting the data retention requirement while processing
millions of claims every day

Solution:
A Hadoop system allows archiving seven years’ claims and remit data, which requires complex processing
to get into a normalized format, logging terabytes of data generated from transactional systems daily, and
storing them in CDH for analytical purposes

Hadoop vendor:
Cloudera

Cluster/Data size:  10+ nodes pilot; 1TB of data / day

Links:
Cloudera case study [http://www.cloudera.com/content/dam/cloudera/Resources/PDF/
Cloudera_Case_Study_Healthcare.pdf] (cached copy [cached_reports/
Cloudera_Case_Study_Healthcare.pdf]) (Published Oct 2012)

Monitoring patient vitals at Los Angeles Children's Hos-
pital

Researchers at LA Children's Hospital is using Hadoop to capture and analyze medical sensor data.

Problem:  Collecting lots (billions) of data points from sensors / machines attached to the patients. This
data was periodically purged before because storing this large volume of data on expensive storage was
cost-prohibitive.

Solution:  Continuously streaming data from sensors/machines is collected and stored in HDFS. HDFS
provides scalable data storage at reasonable cost.

Hadoop Vendor:  Unknown
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Cluster/Data size:  ???

Links:
video [http://www.youtube.com/watch?v=NmMbFM7l1Rs]
silicon angle story [http://siliconangle.com/blog/2013/06/27/leveraging-hadoop-to-advance-health-
care-research-childrens-hospital-use-case-hadoopsummit/] (Published June 2013)

10.5. Human Sciences

NextBio
NextBio is using Hadoop MapReduce and HBase to process massive amounts of human genome data.

Problem:
Processing multi-terabyte data sets wasn't feasible using traditional databases like MySQL.

Solution:
NextBio uses Hadoop map reduce to process genome data in batches and it uses HBase as a scalable data
store

Hadoop vendor:
Intel

Links:
NextBio [http://www.nextbio.com/]
Intel case study [http://hadoop.intel.com/pdfs/IntelNextBioCaseStudy.pdf] (cached copy [cached_reports/
IntelNextBioCaseStudy.pdf]) (Published Feb 2013)
Information Week article (May 2012) [http://www.informationweek.com/software/information-man-
agement/hbase-hadoops-next-big-data-chapter/232901601?pgno=1] (cached copy [cached_reports/
www.informationweek_2012_05_08.pdf])

10.6. Telecoms

China Telecom Guangdong
Problem:  Storing billions of mobile call records and providing real time access to the call records and
billing information to customers.
Traditional storage/database systems couldn't scale to the loads and provide a cost effective solution

Solution:  HBase is used to store billions of rows of call record details. 30TB of data is added monthly

Hadoop vendor:  Intel

Hadoop cluster size:  100+ nodes

Links:
China Telecom Quangdong [http://gd.10086.cn/]
Intel case study [http://hadoop.intel.com/pdfs/IntelChinaMobileCaseStudy.pdf] (cached copy
[cached_reports/IntelChinaMobileCaseStudy.pdf]) (Published Feb 2013)
Intel APAC presentation [http://www.slideshare.net/IntelAPAC/apac-big-data-dc-strategy-update-for-
idh-launch-rk]



Hadoop Use Cases and Case Studies

40

Nokia
Nokia collects and analyzes vast amounts of data from mobile phones

Problem:
(1) Dealing with 100TB of structured data and 500TB+ of semi-structured data
(2) 10s of PB across Nokia, 1TB / day

Solution:  HDFS data warehouse allows storing all the semi/multi structured data and offers processing
data at peta byte scale

Hadoop Vendor:  Cloudera

Cluster/Data size:
(1) 500TB of data
(2) 10s of PB across Nokia, 1TB / day

Links:
(1) Cloudera case study [http://www.cloudera.com/content/dam/cloudera/Resources/PDF/
Cloudera_Nokia_Case_Study_Hadoop.pdf] (cached copy [cached_reports/
Cloudera_Nokia_Case_Study_Hadoop.pdf]) (Published Apr 2012)
(2) strata NY 2012 presentation slides [http://cdn.oreillystatic.com/en/assets/1/event/85/Big%20Da-
ta%20Analytics%20Platform%20at%20Nokia%20%E2%80%93%20Selecting%20the%20Right
%20Tool%20for%20the%20Right%20Workload%20Presentation.pdf] (cached copy [cached_reports/
Nokia_Bigdata.pdf])
Strata NY 2012 presentation [http://strataconf.com/stratany2012/public/schedule/detail/26880]

10.7. Travel

Orbitz

Problem:  Orbitz generates tremendous amounts of log data. The raw logs are only stored for a few days
because of costly data warehousing. Orbitz needed an effective way to store and process this data, plus
they needed to improve their hotel rankings.

Solution:  A Hadoop cluster provided a very cost effective way to store vast amounts of raw logs. Data
is cleaned and analyzed and machine learning algorithms are run.

Hadoop Vendor:  ?

Cluster/Data size:  ?

Links:
Orbitz presentation [http://www.slideshare.net/jseidman/windy-citydb-final-4635799] (Published 2010)
Datanami article [http://www.datanami.com/datanami/2012-04-26/six_super-
scale_hadoop_deployments.html]

10.8. Energy

Seismic Data at Chevron
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Problem:  Chevron analyzes vast amounts of seismic data to find potential oil reserves.

Solution:  Hadoop offers the storage capacity and processing power to analyze this data.

Hadoop Vendor:  IBM Big Insights

Cluster/Data size:  ?

Links:
Presentation [http://almaden.ibm.com/colloquium/resources/Managing%20More%20Bits%20Than
%20Barrels%20Breuning.PDF] (cached copy [cached_reports/IBM_Chevron.pdf]) (Published June 2012)

OPower
OPower works with utility companies to provide engaging, relevant, and personalized content about home
energy use to millions of households.

Problem:  Collecting and analyzing massive amounts of data and deriving insights into customers' energy
usage.

Solution:  Hadoop provides a single storage for all the massive data and machine learning algorithms are
run on the data.

Hadoop Vendor:  ?

Cluster/Data size:  ?

Links:
presentation [http://cdn.oreillystatic.com/en/assets/1/event/85/Data%20Science%20with%20Hadoop
%20at%20Opower%20Presentation.pdf] (cached copy [cached_reports/Opower.pdf]) (Published Oct
2012)
Strata NY 2012 [http://strataconf.com/stratany2012/public/schedule/detail/25736]
Strata 2013 [http://strataconf.com/strata2013/public/schedule/detail/27158]
OPower.com [http://www.opower.com]

10.9. Logistics

Trucking data @ US Xpress
US Xpress - one of the largest trucking companies in US - is using Hadoop to store sensor data from their
trucks. The intelligence they mine out of this, saves them $6 million / year in fuel cost alone.

Problem:  Collecting and and storing 100s of data points from thousands of trucks, plus lots of geo data.

Solution:  Hadoop allows storing enormous amount of sensor data. Also Hadoop allows querying / joining
this data with other data sets.

Hadoop Vendor:  ?

Cluster/Data size:  ?

Links:
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Computer Weekly article [http://www.computerweekly.com/news/2240146943/Case-Study-US-Xpress-
deploys-hybrid-big-data-with-Informatica] (Published May 2012)
Hortonworks white paper on 'Business Value of Hadoop' [http://hortonworks.com/
wp-content/uploads/downloads/2013/06/Hortonworks.BusinessValueofHadoop.v1.0.pdf] (cached copy
[cached_reports/Hortonworks.BusinessValueofHadoop.v1.0.pdf]) (Published July 2013)
USXpress.com [http://www.usxpress.com/]
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Chapter 11. Hadoop Distributions

11.1. Why distributions?
Hadoop is Apache software so it is freely available for download and use. So why do we need distributions
at all?

This is very akin to Linux a few years back and Linux distributions like RedHat, Suse and Ubuntu. The
software is free to download and use but distributions offer an easier to use bundle.

So what do Hadoop distros offer?

Distributions provide easy to
install mediums like RPMs

The Apache version of Hadoop is just TAR balls. Distros actually
package it nicely into easy to install packages which make it easy for
system administrators to manage effectively.

Distros package multiple com-
ponents that work well together

The Hadoop ecosystem contains a lot of components (HBase, Pig,
Hive, Zookeeper, etc.) which are being developed independently and
have their own release schedules. Also, there are version dependencies
among the components. For example version 0.92 of HBase needs a
particular version of HDFS.

Distros bundle versions of components that work well together. This
provides a working Hadoop installation right out of the box.

Tested Distro makers strive to ensure good quality components.

Performance patches Sometimes, distros lead the way by including performance patches to
the 'vanilla' versions.

Predictable upgrade path Distros have predictable product release road maps. This ensures they
keep up with developments and bug fixes.

And most importantly . . SUP-
PORT

Lot of distros come with support, which could be very valuable for a
production critical cluster.

11.2. Overview of Hadoop Distributions

Table 11.1. Hadoop Distributions

Distro Remarks Free / Premium

Apache
hadoop.apache.org [http://
hadoop.apache.org]

• The Hadoop Source

• No packaging except TAR
balls

• No extra tools

Completely free and open source

Cloudera
www.cloudera.com [http://
www.cloudera.com]

• Oldest distro

• Very polished

Free / Premium model (depend-
ing on cluster size)



Hadoop Distributions

44

Distro Remarks Free / Premium

• Comes with good tools to in-
stall and manage a Hadoop
cluster

HortonWorks
www.hortonworks.com [http://
www.hortonworks.com]

• Newer distro

• Tracks Apache Hadoop closely

• Comes with tools to manage
and administer a cluster

Completely open source

MapR
www.mapr.com [http://
www.mapr.com]

• MapR has their own file sys-
tem (alternative to HDFS)

• Boasts higher performance

• Nice set of tools to manage
and administer a cluster

• Does not suffer from Single
Point of Failure

• Offer some cool features like
mirroring, snapshots, etc.

Free / Premium model

Intel
hadoop.intel.com [http://
hadoop.intel.com]

• Encryption support

• Hardware acceleration added
to some layers of stack to
boost performance

• Admin tools to deploy and
manage Hadoop

Premium

Pivotal HD
gopivotal.com [http://
gopivotal.com/pivotal-prod-
ucts/pivotal-data-fabric/piv-
otal-hd]

• fast SQL on Hadoop

• software only or appliance

Premium

WANdisco
www.wandisco.com [http://
www.wandisco.com]

• Newer distro

• Hadoop version 2

• Comes with tools to manage
and administer a cluster

Free / Premium model
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11.3. Hadoop in the Cloud

Elephants can really fly in the clouds! Most cloud providers offer Hadoop.

Hadoop clusters in the Cloud
Hadoop clusters can be set up in any cloud service that offers suitable machines.

However, in line with the cloud mantra 'only pay for what you use', Hadoop can be run 'on demand' in
the cloud.

Amazon Elastic Map Reduce
Amazon offers 'On Demand Hadoop', which means there is no permanent Hadoop cluster. A cluster is
spun up to do a job and after that it is shut down - 'pay for usage'.

Amazon offers a slightly customized version of Apache Hadoop and also offers MapR's distribution.

Google's Compute Engine
Google offers MapR's Hadoop distribution in their Compute Engine Cloud.

SkyTab Cloud
SkyTap offers deploy-able Hadoop templates

Links:
Skytap announcement [http://www.skytap.com/news-events/press-releases/skytap-introduces-cloud-
era-hadoop] || How to [http://blog.cloudera.com/blog/2013/01/how-to-deploy-a-cdh-cluster-in-the-sky-
tap-cloud/]
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Chapter 12. Big Data Ecosystem
We met a few members of the Hadoop ecosystem in Chapter 5, Soft Introduction to Hadoop [11]. However
the Hadoop ecosystem is bigger than that, and the Big Data ecosystem is even bigger! And, it is growing
at a rapid pace. Keeping track of Big Data components / products is now a full time job :-)

In this chapter we are going to meet a few more members.

12.1. Getting Data into HDFS
Most of the big data originates outside the Hadoop cluster. These tools will help you get data into HDFS.

Table 12.1. Tools for Getting Data into HDFS

Tool Remarks

Flume [http://flume.apache.org/] Gathers data from multiple sources and gets it into
HDFS.

Scribe [https://github.com/facebook/scribe] Distributed log gatherer, originally developed by
Facebook. It hasn't been updated recently.

Chukwa [http://incubator.apache.org/chukwa/] Data collection system.

Sqoop [http://sqoop.apache.org] Transfers data between Hadoop and Relational
Databases (RDBMS)

Kafka [http://kafka.apache.org/] Distributed publish-subscribe system.

12.2. Compute Frameworks

Table 12.2. Hadoop Compute Frameworks

Tool Remarks

Map reduce [http://hadoop.apache.org/docs/sta-
ble/mapred_tutorial.html]

Original distributed compute framework of
Hadoop

YARN [http://hadoop.apache.org/docs/cur-
rent/hadoop-yarn/hadoop-yarn-site/YARN.html]

Next generation MapReduce, available in Hadoop
version 2.0

Weave [https://github.com/continuuity/weave] Simplified YARN programming

Cloudera SDK Simplified MapReduce programming

12.3. Querying data in HDFS

Table 12.3. Querying Data in HDFS

Tool Remarks

Pig [http://pig.apache.org/] Pig provides a higher level data flow language to
process data. Pig scripts are much more compact
than Java Map Reduce code.
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Tool Remarks

Hive [http://hive.apache.org] Hive provides an SQL layer on top of HDFS. The
data can be queried using SQL rather than writing
Java Map Reduce code.

Cascading Lingual [http://www.cascading.org/lin-
gual/]

Executes ANSI SQL queries as Cascading applica-
tions on Apache Hadoop clusters.

Stinger [http://hortonworks.com/blog/100x-faster-
hive/] / Tez [http://hortonworks.com/blog/intro-
ducing-tez-faster-hadoop-processing/]

Next generation Hive.

Hadapt [http://hadapt.com/] Provides SQL support for Hadoop.
(commercial product)

Greenplum HAWQ [http://www.greenplum.com/
blog/topics/hadoop/introducing-pivotal-hd]

Relational database with SQL support on top of
Hadoop HDFS.
(commercial product)

Cloudera Search [http://www.cloudera.com/
content/cloudera/en/campaign/introduc-
ing-search.html]

Text search on HDFS

12.4. Real time data access

Table 12.4. Real time access to data

Tool Remarks

HBase [http://hbase.apache.org/] A NoSQL data store built on top of Hadoop. Pro-
vides real time access to data.

Accumulo [http://accumulo.apache.org/] A NoSQL store developed by NSA (yes, that agen-
cy!).

Apache Drill [http://incubator.apache.org/drill/] Interactive analysis of large scale data sets.

Citus Data [http://www.citusdata.com/] Relational database with SQL support on top of
Hadoop HDFS.
(commercial product)

Impala [http://blog.cloudera.com/blog/2012/10/
cloudera-impala-real-time-queries-in-apache-
hadoop-for-real/]

Provides real time queries over Big Data. Devel-
oped by Cloudera.

Phoenix [http://phoenix-hbase.blogspot.com/] SQL layer over HBase. Developed by
SalesForce.com.

Spire [http://drawntoscale.com/why-spire/] SQL layer over HBase. Developed by
DrawnToScale.com.

12.5. Big Data databases

Table 12.5. Databases for Big Data

Tool Remarks

HBase [http://hbase.apache.org/] NoSQL built on top of Hadoop.
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Tool Remarks

Cassandra [http://cassandra.apache.org/] NoSQL store (does not use Hadoop).

Redis [http://redis.io/] Key value store.

Amazon SimpleDB [http://aws.amazon.com/sim-
pledb/]

Offered by Amazon on their environment.

Voldermort [http://www.project-voldemort.com/
voldemort/]

Distributed key value store developed by
LinkedIn.

12.6. Hadoop in the Cloud

Table 12.6. Hadoop in the Cloud

Tool Remarks

Amazon Elastic Map Reduce (EMR) [http://
aws.amazon.com/elasticmapreduce/]

On demand Hadoop on Amazon Cloud.

Whirr [http://whirr.apache.org] Tool to easily spin up and manage Hadoop clusters
on cloud services like Amazon / RackSpace.

12.7. Work flow Tools

Table 12.7. Work flow Tools

Tool Remarks

Oozie [http://oozie.apache.org/] Orchestrates map reduce jobs.

Cascading [http://www.cascading.org/] Application framework for Java developers to de-
velop robust Data Analytics and Data Management
applications on Apache Hadoop.

Scalding [https://github.com/twitter/scalding] Scala library that makes it easy to specify Hadoop
MapReduce jobs. Scalding is built on top of Cas-
cading.

Lipstick [https://github.com/Netflix/Lipstick] Pig work flow visualization

12.8. Serialization Frameworks

Table 12.8. Serialization Frameworks

Tool Remarks

Avro [http://avro.apache.org/] Data serialization system.

Trevni [https://github.com/cutting/trevni] Column file format.

Protobuf [https://code.google.com/p/protobuf/] Popular serialization library (not a Hadoop
project).
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12.9. Monitoring Systems

Table 12.9. Tools for Monitoring Hadoop

Tool Remarks

Hue [http://cloudera.github.com/hue/] Developed by Cloudera.

Ganglia [http://ganglia.sourceforge.net/] Overall host monitoring system. Hadoop can pub-
lish metrics to Ganglia.

Open TSDB [http://opentsdb.net/] Metrics collector and visualizer.

Nagios [http://www.nagios.org/] IT infrastructure monitoring.

12.10. Applications

Table 12.10. Applications that run on top of Hadoop

Tool Remarks

Mahout [http://mahout.apache.org/] Recommendation engine on top of Hadoop.

Giraph [http://incubator.apache.org/giraph/] Fast graph processing on top of Hadoop.

12.11. Distributed Coordination

Table 12.11. Distributed Coordination

Tool Remarks

Zookeeper [http://zookeeper.apache.org/] ZooKeeper is a centralized service for maintaining
configuration information, naming, and providing
distributed synchronization.

Book keeper [http://zookeeper.apache.org/book-
keeper/]

Distributed logging service based on ZooKeeper.

12.12. Data Analytics Tools

Table 12.12. Data Analytics on Hadoop

Tool Remarks

R language [http://www.r-project.org/] Software environment for statistical computing
and graphics.

RHIPE [http://www.datadr.org/] Integrates R and Hadoop.
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12.13. Distributed Message Processing

Table 12.13. Distributed Message Processing

Tool Remarks

Akka [http://akka.io/] Distributed messaging system with actors.

RabbitMQ [http://www.rabbitmq.com/] Distributed MQ messaging system.

12.14. Business Intelligence (BI) Tools

Table 12.14. Business Intelligence (BI) Tools

Tool Remarks

Datameer [http://www.datameer.com/]

Tableau [http://www.tableausoftware.com/]

Pentaho [http://www.pentaho.com/]

SiSense [http://www.sisense.com/]

SumoLogic [http://www.sumologic.com/]

12.15. Stream Processing

Table 12.15. Stream Processing Tools

Tool Remarks

Storm [http://storm-project.net/] Fast stream processing developed by Twitter.

Apache S4 [http://incubator.apache.org/s4/]

Samza [http://samza.incubator.apache.org/]

Malhar [https://github.com/DataTorrent/Malhar]

12.16. YARN based frameworks

Table 12.16. YARN based frameworks

Tool Remarks

Samza [http://samza.incubator.apache.org/]

Spark [http://spark-project.org/] Spark on YARN [http://
spark.incubator.apache.org/docs/0.6.0/running-on-
yarn.html]

Malhar [https://github.com/DataTorrent/Malhar]

Giraph [http://incubator.apache.org/giraph/] Giraph on YARN [http://www.slideshare.net/
Hadoop_Summit/fast-scalable-graph-process-
ing-apache-giraph-on-yarn]
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Tool Remarks

Storm [http://storm-project.net/] Storm on YARN [http://developer.yahoo.com/
blogs/ydn/storm-yarn-released-open-
source-143745133.html]

Hoya (HBase on YARN) [http://hortonworks.com/
blog/introducing-hoya-hbase-on-yarn/]

Malhar [https://github.com/DataTorrent/Malhar]

12.17. Miscellaneous

Table 12.17. Miscellaneous Stuff

Tool Remarks

Spark [http://spark-project.org/] In memory analytics engine developed by Berke-
ley AMP labs.

Shark (Hive on Spark) [http://
shark.cs.berkeley.edu/]

Hive compatible data warehouse system developed
at Berkeley. Claims to be much faster than Hive.

Elephant Bird [https://github.com/kevinweil/ele-
phant-bird]

Compression codes and serializers for Hadoop.
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Chapter 13.  Business Intelligence
Tools For Hadoop and Big Data

13.1.  The case for BI Tools
Analytics for Hadoop can be done by the following:

• Writing custom Map Reduce code using Java, Python, R ..etc

• Using high level Pig scripts

• Using SQL using Hive

How ever doing analytics like this can feel a little pedantic and time consuming. Business INtelligence
tools (BI tools for short) can address this problem.

BI tools have been around since before Hadoop. Some of them are generic, some are very specific towards
a certain domain (e.g. Telecom, Health Care ..etc). BI tools provide rich, user friendly environment to slice
and dice data. Most of them have nice GUI environments as well.

13.2.  BI Tools Feature Matrix Comparison
Since Hadoop is gaining popularity as a data silo, a lot of BI tools have added support to Hadoop. In this
chapter we will look into some BI tools that work with Hadoop.

We are trying to present capabilities of BI tools in an easy to compare feature matrix format. This is a
'living' document. We will keep it updated as new versions and new features surface.

This matrix is under construction

How to read the matrix?
Y - feature is supported
N - feature is NOT supported
? or empty - unknown
Read the legend for feature descriptions.

Table 13.1. BI Tools Comparison : Data Access and Management

BI tool Access raw
data on
Hadoop

Manage da-
ta on HDFS

Import/Ex-
port data
into/out of
HDFS

Transparent
compression

Data Reten-
tion

Data valida-
tion

Datameer
[http://
www.datameer.com]

Y Y Y Y Y

Tableau
[http://
www.tableausoftware.com/
]

Y
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BI tool Access raw
data on
Hadoop

Manage da-
ta on HDFS

Import/Ex-
port data
into/out of
HDFS

Transparent
compression

Data Reten-
tion

Data valida-
tion

Pentaho
[http://
www.pentaho.com/
]

Y

Table 13.2. BI Tools Comparison : Analytics

BI tool pre-built ana-
lytics

Predictive ana-
lytics

Time series
forecasting

Recommenda-
tion engine

Analytics app
store

Datameer
[http://
www.datameer.com]

Y Y Y

Tableau [http://
www.tableausoftware.com/
]

Y

Pentaho [http://
www.pentaho.com/
]

Y Y Y

Table 13.3. BI Tools Comparison : Visualizing

BI tool Visual query
designer

Rich widgets Multiple
platforms
(web,mobile)

Interactive
dashboards

Share with
others

Local ren-
dering

Datameer
[http://
www.datameer.com]

Y Y Y Y

Tableau
[http://
www.tableausoftware.com/
]

Y Y Y Y Y Y

Pentaho
[http://
www.pentaho.com/
]

Y Y Y Y

Table 13.4. BI Tools Comparison : Connectivity

BI tool HadoopHBase Cloud-
era
Im-
pala

Cas-
sandra

Mon-
goDB

Rela-
tional
databas-
es

Verti-
ca

Tera-
data /
Aster

Netez-
za

SAP
HANA

Ama-
zon
Red-
Shift

Datameer
[http://
www.datameer.com]

Y Y Y Y Y

Tableau
[http://

Y Y
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BI tool HadoopHBase Cloud-
era
Im-
pala

Cas-
sandra

Mon-
goDB

Rela-
tional
databas-
es

Verti-
ca

Tera-
data /
Aster

Netez-
za

SAP
HANA

Ama-
zon
Red-
Shift

www.tableausoftware.com/
]

Pen-
taho
[http://
www.pentaho.com/
]

Y Y Y Y Y Y Y Y

Table 13.5. BI Tools Comparison : Misc

BI tool Security Role based
permissions

Supports
multiple
Hadoop Dis-
tributions

Supports
Hadoop on
Cloud

Hosted ana-
lytics

Free evalua-
tion

Datameer
[http://
www.datameer.com]

Y
(LDAP, Ac-
tive Directo-
ry, Kerberos)

Y Y Y (Amazon) N Y

Tableau
[http://
www.tableausoftware.com/
]

Y
(LDAP, Ac-
tive Directo-
ry, Kerberos)

Y Y Y Y

Pentaho
[http://
www.pentaho.com/
]

Y
(LDAP, Ac-
tive Directo-
ry, Kerberos)

Y Y Y

13.3.  Glossary of terms
Data Validataion Can validate data confirms to certain limits, can do cleansing and de-

duping.

Share with others Can share the results with others within or outside organization easily.
(Think like sharing a document on DropBox or Google Drive)

Local Rendering You can slice and dice data on locally on a computer or tablet. This
uses the CPU power of the device and doesn't need a round-trip to a
'server' to process results. This can speed up ad-hoc data exploration

Analytics 'app store' The platform allows customers to buy third party analytics app. Think
like APple App Store



55

Chapter 14. Hardware and Software for
Hadoop

14.1. Hardware
Hadoop runs on commodity hardware. That doesn't mean it runs on cheapo hardware. Hadoop runs on
decent server class machines.

Here are some possibilities of hardware for Hadoop nodes.

Table 14.1. Hardware Specs

 Medium High End

CPU 8 physical cores 12 physical cores

Memory 16 GB 48 GB

Disk 4 disks x 1TB = 4 TB 12 disks x 3TB = 36 TB

Network 1 GB Ethernet 10 GB Ethernet or Infiniband

So the high end machines have more memory. Plus, newer machines are packed with a lot more disks (e.g.
36 TB) -- high storage capacity.

Examples of Hadoop servers

• HP ProLiant DL380 [http://h10010.www1.hp.com/wwpc/us/en/sm/
WF06a/15351-15351-3328412-241644-241475-4091412.html?dnr=1]

• Dell C2100 series [http://www.dell.com/us/enterprise/p/poweredge-c2100/pd]
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• Supermicro Hadoop series [http://www.supermicro.com/products/nfo/files/hadoop/supermi-
cro-hadoop.pdf]

So how does a large hadoop cluster looks like? Here is a picture of Yahoo's Hadoop cluster.

image credit to : http://developer.yahoo.com/blogs/ydn/posts/2007/07/yahoo-hadoop/

14.2. Software

Operating System
Hadoop runs well on Linux. The operating systems of choice are:

RedHat Enterprise Linux
(RHEL)

This is a well tested Linux distro that is geared for Enterprise. Comes
with RedHat support

CentOS Source compatible distro with RHEL. Free. Very popular for running
Hadoop. Use a later version (version 6.x).

Ubuntu The Server edition of Ubuntu is a good fit -- not the Desktop edition.
Long Term Support (LTS) releases are recommended, because they
continue to be updated for at least 2 years.

Java
Hadoop is written in Java. The recommended Java version is Oracle JDK 1.6 release and the recommended
minimum revision is 31 (v 1.6.31).

So what about OpenJDK? At this point the Sun JDK is the 'official' supported JDK. You can still run
Hadoop on OpenJDK (it runs reasonably well) but you are on your own for support :-)
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Chapter 15. Hadoop Challenges
This chapter explores some of the challenges in adopting Hadoop in to a company.

15.1. Hadoop is a cutting edge technology
Hadoop is a new technology, and as with adopting any new technology, finding people who know the
technology is difficult!

15.2. Hadoop in the Enterprise Ecosystem
Hadoop is designed to solve Big Data problems encountered by Web and Social companies. In doing so a
lot of the features Enterprises need or want are put on the back burner. For example, HDFS does not offer
native support for security and authentication.

15.3. Hadoop is still rough around the edges
The development and admin tools for Hadoop are still pretty new. Companies like Cloudera, Hortonworks,
MapR and Karmasphere have been working on this issue. How ever the tooling may not be as mature as
Enterprises are used to (as say, Oracle Admin, etc.)

15.4. Hadoop is NOT cheap

Hardware Cost
Hadoop runs on 'commodity' hardware. But these are not cheapo machines, they are server grade hardware.
For more see Chapter 14, Hardware and Software for Hadoop [55]

So standing up a reasonably large Hadoop cluster, say 100 nodes, will cost a significant amount of money.
For example, lets say a Hadoop node is $5000, so a 100 node cluster would be $500,000 for hardware.

IT and Operations costs
A large Hadoop cluster will require support from various teams like : Network Admins, IT, Security
Admins, System Admins.

Also one needs to think about operational costs like Data Center expenses : cooling, electricity, etc.

15.5. Map Reduce is a different programming
paradigm

Solving problems using Map Reduce requires a different kind of thinking. Engineering teams generally
need additional training to take advantage of Hadoop.
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15.6. Hadoop and High Availability
Hadoop version 1 had a single point of failure problem because of NameNode. There was only one Na-
meNode for the cluster, and if it went down, the whole Hadoop cluster would be inoperable. This has
prevented the use of Hadoop for mission critical, always-up applications.

This problem is more pronounced on paper than in reality. Yahoo did a study that analyzed their Hadoop
cluster failures and found that only a tiny fraction of failures were caused by NameNode failure.
TODO : link

However, this problem is being solved by various Hadoop providers. See ??? chapter for more details.
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Chapter 16. Publicly Available Big Data
Sets

16.1. Pointers to data sets
•How to get experience working with large data sets

http://www.philwhln.com/how-to-get-experience-working-with-large-datasets

•Quora
www.quora.com/Data/Where-can-I-find-large-datasets-open-to-the-public [http://www.quora.com/
Data/Where-can-I-find-large-datasets-open-to-the-public] -- very good collection of links

•DataMobs
http://datamob.org/datasets

•KDNuggets
http://www.kdnuggets.com/datasets/

•Research Pipeline
http://www.researchpipeline.com/mediawiki/index.php?title=Main_Page

•Google Public Data Directory
http://www.google.com/publicdata/directory

•Delicious 1
https://delicious.com/pskomoroch/dataset

•Delcious 2
https://delicious.com/judell/publicdata?networkaddconfirm=judell

16.2. Generic Repositories
•Public Data sets on Amazon AWS

Amazon provides following data sets : ENSEMBL Annotated Gnome data, US Census data, UniGene,
Freebase dump
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Data transfer is 'free' within Amazon eco system (within the same zone)

AWS data sets [http://aws.amazon.com/publicdatasets/]

•InfoChimps

InfoChimps has data marketplace with a wide variety of data sets.

InfoChimps market place [http://www.infochimps.com/marketplace]

•Comprehensive Knowledge Archive Network

open source data portal platform

data sets available on datahub.io [http://datahub.io/] from ckan.org [http://ckan.org/]

•Stanford network data collection

http://snap.stanford.edu/data/index.html

•Open Flights

Crowd sourced flight data http://openflights.org/

•Flight arrival data

http://stat-computing.org/dataexpo/2009/the-data.html

16.3. Geo data
•Wikipedia data

wikipedia data [http://en.wikipedia.org/wiki/Wikipedia:Database_download]

•OpenStreetMap.org

OpenStreetMap is a free worldwide map, created by people users. The geo and map data is available
for download.
openstreet.org [http://planet.openstreetmap.org/]

•Natural Earth Data

http://www.naturalearthdata.com/downloads/

•Geocomm

http://data.geocomm.com/drg/index.html
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•Geonames data
http://www.geonames.org/

•US GIS Data
Available from http://libremap.org/

16.4. Web data
•Wikipedia data

wikipedia data [http://en.wikipedia.org/wiki/Wikipedia:Database_download]

•Google N-gram data
google ngram [http://storage.googleapis.com/books/ngrams/books/datasetsv2.html]

•Public terabyte data
Web data crawl data linky [http://www.scaleunlimited.com/datasets/public-terabyte-dataset-project/]

•Freebase data
variety of data available from http://www.freebase.com/

•Stack OverFlow data
http://blog.stackoverflow.com/category/cc-wiki-dump/

•UCI KDD data
http://kdd.ics.uci.edu/

16.5.  Government data
•European Parliament proceedings

proceedings [http://www.statmt.org/europarl/] from Statistical machine Translation [http://
www.statmt.org]

•US government data
data.gov [http://www.data.gov/]

•UK government data
data.gov.uk [http://data.gov.uk/]
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•US Patent and Trademark Office Filings
www.google.com/googlebooks/uspto.html [http://www.google.com/googlebooks/uspto.html]

•World Bank Data
http://datacatalog.worldbank.org/

•Public Health Data sets
http://phpartners.org/health_stats.html

•National Institute of Health
http://projectreporter.nih.gov/reporter.cfm

•Aid information
http://www.aidinfo.org/data

•UN Data
http://data.un.org/Explorer.aspx
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Chapter 17. Big Data News and Links

17.1. news sites
• datasciencecentral.com [http://www.datasciencecentral.com/]

• www.scoop.it/t/hadoop-and-mahout [http://www.scoop.it/t/hadoop-and-mahout]

• www.infoworld.com/t/big-data [http://www.infoworld.com/t/big-data]

• highscalability.com [http://highscalability.com/]

• gigaom.com/tag/big-data/ [http://gigaom.com/tag/big-data/]

• techcrunch.com/tag/big-data/ [http://techcrunch.com/tag/big-data/]

17.2. blogs from hadoop vendors
• blog.cloudera.com/blog [http://blog.cloudera.com/blog/]

• hortonworks.com/blog [http://hortonworks.com/blog/]

• www.greenplum.com/blog/tag/pivotal-hd [http://www.greenplum.com/blog/tag/pivotal-hd]

• blogs.wandisco.com/category/big-data/ [http://blogs.wandisco.com/category/big-data/]

• www.mapr.com/blog [http://www.mapr.com/blog]


