

Get a CLUE* with Linux:
*command line user environment

Get a CLUE with Linux;

 Or, how to save 182 manhours
 analyzing test results by using

 LINUX regular expression tools
at the command line

 rather than in Microsoft Excel.

(spreadsheets are amazing tools!)

https://www.smashwords.com/books/view/505731

Get a CLUE* with Linux -
*Command Line User Environment

• Regular Expressions in Linux saved around 182 Manhours during the
remaining 14 tests of a 19 test cycle with 10 reports for each cycle.

• Linux saved about 13 hours per test cycle of sorting and comparing in
Excel by using regular expression commands in a Linux shell, taking less than

15 minutes to type the commands.
• A BASH shell script was written to automate the process;

it runs in less than FIVE SECONDS.
• 13 hours to 15 minutes to less than 5 seconds for each cycle.
• First an overview of Linux; then the script will be explained.

Linux consists of TWO THINGS:
Files and Processes

Files are used to create processes and
processes do things with or to files.

Files may be created or modified using "stdin" - aka, keyboard or other devices,

and also from the output of processes, known as "stdout".
There is a third value, "stderr", which reports errors to "stdout".

stdin, stdout and stderr can all be redirected, piped, filtered and modified at the command line.
Linux uses INTERPROCESS COMMUNICATION - ("piping") allows the output from one process to be the input to another.

http://linuxmeister.net/Notes/linux-consists-of-files-processes.jpg
http://linuxmeister.net/Notes/linux-consists-of-files-processes.jpg
http://linuxmeister.net/Notes/linux-consists-of-files-processes.jpg
http://linuxmeister.net/Notes/Linux_Files-Processes-Kernel.jpg
http://linuxmeister.net/Overview/

This presentation:
http://linuxmeister.net/Scripts/Engineering/

One Page LINUX Overview:
http://linuxmeister.net/Overview/

a quick overview to view later:
http://LinuxMeister.net/Overview/Linux-PowerPoint-2004-overview.pdf

RESOURCES potentially available at work:
 1) Cygwin in Windows – internal sources
 2) BASH in Win10 – upon approval
 3) Linux in a VM – upon request/approval
 4) Linux on a system – upon request/approval
 5) Linux accessed via existing system in datacenter.

http://linuxmeister.net/Scripts/Engineering/
http://linuxmeister.net/Overview/
http://linuxmeister.net/Overview/Linux-PowerPoint-2004-overview.pdf
https://www.smashwords.com/books/view/508267
https://www.smashwords.com/books/view/508267
https://www.smashwords.com/books/view/508267
https://www.smashwords.com/books/view/703463
https://www.smashwords.com/books/view/703463
https://www.smashwords.com/books/view/703463
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/705084
http://linuxmeister.net/Overview/
https://distrowatch.com/

http://linuxmeister.net/Notes/Philosophy_of_Linux.html

To learn Linux, start with these 5 commands:

man, ls, cd, pwd, more
To compare Microsoft DOS commands with Linux see these pages:

http://linuxmeister.net/Microsoft/DOS-Linux-cmds.html
http://linuxmeister.net/Microsoft/PowerShell-vs-BASH-commands-compared.html

http://linuxmeister.net/Microsoft/LOADTEST-OS-COMPARISON.html
In Linux, we have many ways to show the contents of a file, more is recommended because it filters,
 see also: “less”, “cat”, “tac” and other commands (use apropos to find other cmds, and man to learn about them)

http://linuxmeister.net/Microsoft/DOS-Linux-cmds.html
http://linuxmeister.net/Microsoft/PowerShell-vs-BASH-commands-compared.html
http://linuxmeister.net/Microsoft/LOADTEST-OS-COMPARISON.html
http://linuxmeister.net/Microsoft/LOADTEST-OS-COMPARISON.html
http://linuxmeister.net/Commands/
http://linuxmeister.net/Intro-to-Linux/lab-exercise-1.html

Setting up your SHELL environment will help productivity, visibility and create custom tools:

see also #1 of the lesser tenets: allow the user to tailor the environment...
http://linuxmeister.net/Intro-to-Linux/bashrc-n-history-details.html
http://linuxmeister.net/Notes/bashrc-basic.html

http://linuxmeister.net/Intro-to-Linux/bashrc-n-history-details.html
http://linuxmeister.net/Notes/bashrc-basic.html
http://johnmeister.com/linux/bashrc-basic.html

Files, filesystems and terminology

http://linuxmeister.net/Intro-to-Linux/Slides/ALL.html

You need to be aware of "key words", built-ins and commands,

as well as special characters.

http://johnmeister.com/linux/Intro-to-Linux/Special-Characters.pdf
http://linuxmeister.net/Intro-to-Linux/Special-Characters.pdf

Sorting things out:
 naming files and directories (NEVER use spaces or most special characters)

http://johnmeister.com/linux/Microsoft/Win7-Office2007-tips/

the best editor in the world: vi
to enable at the command line: set -o vi

http://linuxmeister.net/vi/

Regular Expressions
• awk – Aho, Alfred V.; Weinberger, Peter J.; and Kernighan Brian W. (1977)

https://en.wikipedia.org/wiki/AWK#Versions_and_implementations
http://linuxmeister.net/Commands/awk-example.html http://linuxmeister.net/Notes/tabs-convert-to-spaces.html

• sed – stream editor (also used with Perl)
http://linuxmeister.net/Notes/using-sed-to-count-executable-files.html

ls `env | grep PATH | grep -v XNLSPATH | sed -e 's/^PATH=//' | sed -e 's/\:/ /g'` 2>/dev/null | wc -l

• grep – global regular expression search
http://linuxmeister.net/Notes/using-find-grep-xargs.html http://linuxmeister.net/Commands/use-of-grep.html
find . -type f -name *.html | xargs grep johnmeister.com/linux | perl -pi -e 's$http://johnmeister.com/linux$http://linuxmeister.net$g'

https://en.wikipedia.org/wiki/AWK#Versions_and_implementations
http://linuxmeister.net/Commands/awk-example.html
http://linuxmeister.net/Notes/tabs-convert-to-spaces.html
http://linuxmeister.net/Notes/using-sed-to-count-executable-files.html
http://linuxmeister.net/Notes/using-find-grep-xargs.html
http://linuxmeister.net/Commands/use-of-grep.html
http://linuxmeister.net/Notes/REGULAR-EXPRESSIONS-simple.html

SORTING TEST RESULTS USING REGULAR EXPRESSIONS
• A computer system under test in the early development stages monitored an ARINC bus and reported

statuses. Some of the notifications were considered nuisance messages because of intial settings.

Some errors might be related to a sensor with too narrow a hysteresis, a parameter incorrectly set in the s/w,
an out of adjustment gadget, or less likely, an actual defective component.

Analyzing his process and test results, we determined the plain text files had a consistent format
with an easily spotted "key field", i.e. the ATA Maintenance Chapter.

The reports had names unique to the product under test. This info was also in each report.

To protect the original reports and to make handling the sorts easier,
We copied the originals with new names from 01.txt to 10.txt, with a "txt" suffix for interoperability.

• note: the content of these reports and the specific systems involved are not included, "dummy data is used“

• 10 reports were generated for each test cycle of the system
• 19 test runs were made under different conditions to ensure full compliance
• a USB device is used to copy the text files from the system
• The 10 reports were copied into Excel
• each report would be sorted in Excel by ATA chapter
• copying and sorting the reports would take an hour
• after all 10 reports were sorted, the engineer compared them, looking for common errors
• It took another 3 hours to compare those 10 sorted reports
• The engineer then examined each of the common errors in the original reports
• Once he determined the issue, he'd resolve that one and move to the next
• The engineer had 13 hours invested in this analysis for just ONE test cycle, there were 19 total tests

but he didn't come to the lab until he had completed 5 test cycles, leaving 14 cycles for the savings.
• Had we run the script for all 19 cycles the savings could have been 247 manhours.

https://havrel.honeywell.com/docs/inforesources/ATA_Chapter_Descriptions.PDF

https://havrel.honeywell.com/docs/inforesources/ATA_Chapter_Descriptions.PDF
https://havrel.honeywell.com/docs/inforesources/ATA_Chapter_Descriptions.PDF

basic info found in the reports and scoping the file sizes
1) Determine how many lines of data were in the 10 files.
2) Copy originals as 01.txt to 10.txt, so we can use "?" wildcards.
3) "cat" all 10, then count lines using wc.

 --> cat ??.txt | wc -l
41025

 that’s 41,025 lines of information.
4) add more filters to see how many possible Messages there could be:

 -> cat ??.txt | grep Maint | grep - | wc -l
5640

 That’s 5,640 messages included in that batch of 10 reports.
5) Now we needed to find out which were common across all 10 reports and work those.
6) Technical content for each of the reported errors ranged from 14 to about 23 lines long,

using "grep" with the -A for "after" the pattern, we could create a report that gave most of the details.

Initially the engineer did the steps manually. A script has been written to automate the steps.
 What took 13 hours per test run in EXCEL now takes less than 5 seconds in a Linux shell..

 From 13 hours... to less than 5 seconds.

Next, find one error message in these 10 reports. The information is obsfucated for security.

 grep to find the pattern 21-18891 and to display 23 lines after that.

 The goal of course was to eliminate all errors, but initially they focused on the common ones first.

the manual process (15 minutes)
We tested this process with three reports.
--> cat 01.txt | grep Mainten | grep - | awk '{print $4}' | sort > 01-rpt

The awk command will find patterns between delimiters. A space is a default delimiter.
In the string above we are printing the 4th field, the string we found with grep looked like this:
 [] Maintenance Message: 21-18891 ACTIVE
The first field is the "brackets", second "Maintenance", third " Message:", and fourth, our numbers.
NOTE: at this point the three files were created with Maintenance codes only listed
-rw-r--r-- 1 luser users 486 Sep 19 14:17 1-rpt
-rw-r--r-- 1 luser users 414 Sep 19 14:18 2-rpt
-rw-r--r-- 1 luser users 1143 Sep 19 14:18 3-rpt

Once the 3 files were intially used to create the Maint code list test report, then we used the "compare" command to compare the 3
(or more) reports: (comm - compare two sorted files line by line)
 --> comm -12 1-rpt 2-rpt | comm -12 - 3-rpt > common-messages.txt
Then we look at our common messages in the file...
in the example below we saw 7 common messages across all three of the reports. # NOTE: testing output:

--> cat common-messages.txt
24-19405
30-32702
30-32703 …
#
Then we used grep (global regular expression - print lines matching a pattern) to find WHICH of the filtered files had those
codes...we used grep on each of the original files to find the reports which lead us back to the messages. TESTING:

--> grep 24-19405 *
1-rpt:24-19405
2-rpt:24-19405
3-rpt:24-19405
common-messages.txt:24-19405
XX_YY_B-7839_2016-07-28_21.38.57Z.txt: [] Maintenance Message: 24-19405 ACTIVE
XX_YY_AP432A_2016-07-28_21.06.45Z.txt: [] Maintenance Message: 24-19405 ACTIVE
XX_SPTEST465_2016-05-18_07.46.58Z.txt: [] Maintenance Message: 24-19405 ACTIVE
--

Use grep to globally find the regular expression “21-18891”
and then display 23 lines After that in file 01.txt

--> grep -A 23 21-18891 01.txt
(NOTE: could redirect to a file, or pipe to another process…)

 [] Maintenance Message: 21-18891 ACTIVE
 Left ECS Card has no output on ECS ARINC 429 Bus

 EF_010203040_longtimeago-01-08_21.28.48Z.txt 090807060
 TEST DB: ABC-D-EF41-000D PAGE: 7
 MaintComp OPS: HIJ-K-LM32-600J DATE: 08JAN18
 OTHER OPS: Compatible TIME: 2129z

 EXISTING FAULTS All Existing Maintenance Messages
 This data is from the Left MaintComp

 21 Environmental Confusion System (29)

 Detected By:
 ARINC Signal Gateway (left), LSCF
 ARINC Signal Gateway (right), LSCF

 Recommended Maintenance Action:
 See Fault Isolation procedure. When using a maintenance
 laptop to show MaintComp data, select FAULT ISOLATION DESTRUCTION button
 below.

 21 Cabin Temperature Confusion System (5)

Test Result Analysis script – find common messages
#!/bin/bash
jm - 25jan2018 - ATA info extract from test reports
##

for x in `ls ??.txt` # for each report find the ATA chapters listed
 do

 Y=`echo $x | cut -c 1-2`
 ### NOTE: drop the suffix: .txt - cut first two characters to use for new filename

 cat $x | grep Mainten | grep - | awk '{print $4}' | sort | uniq | grep -v ^$ > $Y-rpt
 ### NOTE: grep for key term, qualify with "-", print values in field 4, sort, drop dups and blank lines

 done
##

 comm -12 01-rpt 02-rpt | comm -12 - 03-rpt | comm -12 - 04-rpt | \
comm -12 - 05-rpt | comm -12 - 06-rpt | comm -12 - 07-rpt | \
comm -12 - 08-rpt | comm -12 - 09-rpt | comm -12 - 10-rpt > common-messages.txt
##

 for z in `cat common-messages`
 do
 grep $z ??.txt >> status-ATA-designator-`date +%d%b%y`.txt
 echo "===========" >> status-ATA-designator-`date +%d%b%y`.txt
 grep -A 15 $z ??.txt >> DETAILS-ATA-designator-`date +%d%b%y`.txt
 echo "===========" >> DETAILS-ATA-designator-`date +%d%b%y`.txt
 done
##
first grep gets the line with the ATA chapter, 2nd grep read 15 lines AFTER - to see details
the echo inserts a divider between messages for reading clarity
##

...and executing the script...

--> time sh ./get-ATA.sh
====== finding common ATA chapter messages in 10 reports for further analysis ====

Thu, Jan 25, 2018 3:50:01 PM
= completed, see ATA...msg-status and ATA...DETAILS for analysis areas =====

Thu, Jan 25, 2018 3:50:06 PM
========================

real 0m5.110s # note: cygwin on win 7 T5810 desktop
user 0m0.512s
sys 0m3.060s

AFTER RUNNING THE SCRIPT:
--
luser@Luser-Lab [/home/luser/LINUX_REG_EXP_TOOLS/FIND-COMMON_ATA_MSG]
--
--> ll
total 4317
-rwxrwx---+ 1 luser local Lusers 185208 Jan 25 09:03 01.txt
-rw-rw-r--+ 1 luser local Lusers 2466 Jan 25 15:50 01-rpt

….
-rwxrwx---+ 1 luser local Lusers 441026 Jan 25 09:03 09.txt
-rw-rw-r--+ 1 luser local Lusers 5180 Jan 25 15:50 10-rpt
-rw-rw-r--+ 1 luser local Lusers 104801 Jan 25 15:50 DETAILS-ATA-designator-25Jan18.txt
-rw-rw-r--+ 1 luser local Lusers 11042 Jan 25 15:50 status-ATA-designator-25Jan18.txt
-rw-rw-r--+ 1 luser local Lusers 99 Jan 25 15:50 common-messages.txt
-rw-rw-r--+ 1 luser local Lusers 2513 Jan 25 15:49 get-ATA.sh

--
01.txt: [] Maintenance Message: 38-12041 LATCHED
02.txt: [] Maintenance Message: 38-12041 ACTIVE
03.txt: [] Maintenance Message: 38-12041 LATCHED
….

...performance of script... compare OS & HW
--> time sh ./get-ATA.sh

 Env OS hardware min seconds processor(s) speed memory

1 BASH SuSE Linux 42.1 Dell M4800 0 0.202 quad core 2.9 GHz 16 Gb

2 BASH Ubuntu Linux 14.04 Dell T5810 0 0.219 4 3.7GHz 16 Gb

3 BASH Centos7 Linux Dell 7520 0 0.263 quad core 2.9 GHz 16 Gb

4 VM/Mac Mint Mate 17.3 MacBook Air 13" 2012 0 0.227 1 2GHz 8Gb

5 BASH SuSE Linux 42.2
Toshiba Portege
R600 0 0.478 core2duo 1.4 GHz 4 Gb

6 BASH WINDOWS 10 Dell T5810 0 1.689 4 3.7GHz 16 Gb

7 BASH MacOSX 10.13.3 MacBook Air 13" 2012 0 1.941 1 2GHz 8Gb

8 CygWin Windows 7 Dell T5810 0 5.110 4 3.7GHz 16 Gb

9 CygWin Windows 7 Dell E5440 1 26.862 1 dual core 1.9GHz 8Gb

 Env OS hardware min seconds processor(s) speed memory

5 BASH SuSE Linux 42.2
Toshiba Portege
R600 0 0.478 core2duo 1.4 GHz 4 Gb

9 CygWin Windows 7 Dell E5440 1 26.862 1 dual core 1.9GHz 8Gb

4 VM/Mac Mint Mate 17.3 MacBook Air 13" 2012 0 0.227 1 2GHz 8Gb

7 BASH MacOSX 10.13.3 MacBook Air 13" 2012 0 1.941 1 2GHz 8Gb

1 BASH SuSE Linux 42.1 Dell M4800 0 0.202 quad core 2.9 GHz 16 Gb

2 BASH Ubuntu Linux 14.04 Dell T5810 0 0.219 4 3.7GHz 16 Gb

3 BASH Centos7 Linux Dell 7520 0 0.263 quad core 2.9 GHz 16 Gb

6 BASH WINDOWS 10 Dell T5810 0 1.689 4 3.7GHz 16 Gb

8 CygWin Windows 7 Dell T5810 0 5.110 4 3.7GHz 16 Gb

 the BOTTOM LINE,
there are only a few command lines needed, e.g. with 4 reports:
 cat 01.txt | grep Mainten | grep - | awk '{print $4}' | sort | uniq | grep -v ^$ > 01.rpt
 cat 02.txt | grep Mainten | grep - | awk '{print $4}' | sort | uniq | grep -v ^$ > 02.rpt
 cat 03.txt | grep Mainten | grep - | awk '{print $4}' | sort | uniq | grep -v ^$ > 03.rpt
 cat 04.txt | grep Mainten | grep - | awk '{print $4}' | sort | uniq | grep -v ^$ > 04.rpt

 ...
 comm -12 01.rpt 02.rpt | comm -12 - 03.rpt | comm -12 - 04.rpt > common-errors.txt
 cat common-errors.txt (find the ATA number)
 grep -A 16 38-12044 ??.txt

or: grep -A 16 28-12044 [0-1][0-9].txt (many other options...)

For another script example used for testing:

http://linuxmeister.net/Scripts/Engineering/wx-urls-sh-20jan2010.html
More LINUX info and resources:
 http://linuxmeister.net/Intro-to-Linux/One-Hour-Linux-Sessions-2018.html

http://johnmeister.com/linux or http://LinuxMeister.net

 Simply Linux: https://www.smashwords.com/books/view/705084
 Using BASH on Win 10: https://www.smashwords.com/books/view/703463
 Power Savings of Linux: https://www.smashwords.com/books/view/505731
Windows Suggestions: https://www.smashwords.com/books/view/508267
12 hour Video Course: The Art of Linux System Administration
 published by O'Reilly Media Study Guide for the LPIC-2 Certification Exams

 thank you....

http://linuxmeister.net/Scripts/Engineering/wx-urls-sh-20jan2010.html
http://linuxmeister.net/Intro-to-Linux/One-Hour-Linux-Sessions-2018.html
http://linuxmeister.net/Intro-to-Linux/One-Hour-Linux-Sessions-2018.html
http://johnmeister.com/linux
http://johnmeister.com/linux
http://linuxmeister.net/
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/703463
https://www.smashwords.com/books/view/505731
https://www.smashwords.com/books/view/508267
http://shop.oreilly.com/product/0636920050209.do
http://shop.oreilly.com/product/0636920050209.do
http://shop.oreilly.com/product/0636920050209.do
http://shop.oreilly.com/product/0636920050209.do
http://shop.oreilly.com/product/0636920050209.do
http://shop.oreilly.com/product/0636920050209.do
http://shop.oreilly.com/product/0636920050209.do
https://www.smashwords.com/books/view/705084
https://www.smashwords.com/books/view/703463
https://www.smashwords.com/books/view/508267

	Get a CLUE* with Linux: *command line user environment
	Get a CLUE* with Linux - *Command Line User Environment
	Linux consists of TWO THINGS: Files and Processes
	Slide 4
	Slide 5
	To learn Linux, start with these 5 commands: man, ls, cd, pwd, more
	Setting up your SHELL environment will help productivity, visibility and create custom tools: see also #1 of the lesser tenets: allow the user to tailor the environment... http://linuxmeister.net/Intro-to-Linux/bashrc-n-history-details.html http://linuxmeister.net/Notes/bashrc-basic.html
	Files, filesystems and terminology
	You need to be aware of "key words", built-ins and commands, as well as special characters.
	Sorting things out: naming files and directories (NEVER use spaces or most special characters)
	the best editor in the world: vi to enable at the command line: set -o vi
	Regular Expressions
	SORTING TEST RESULTS USING REGULAR EXPRESSIONS
	
	basic info found in the reports and scoping the file sizes
	the manual process (15 minutes)
	Use grep to globally find the regular expression “21-18891” and then display 23 lines After that in file 01.txt
	Test Result Analysis script – find common messages
	...and executing the script...
	...performance of script... compare OS & HW
	Slide 21

